Number Theory in Mathematica
Mod[a, m] computes a mod m.
Prime[k] returns the kth prime number.
PrimeQ[n] returns True if n is prime and False otherwise.
FactorInteger[n] computes the prime factorization of n.
Divisible[n, k] returns True if n is divisible by k, and False otherwise.
Divisors[n] returns a list of all of the positive divisors of n.
DivisorSigma[0, n] returns the number of positive divisors of n.
EulerPhi[n] computes φ(n).
GCD[a, b] computes the greatest common divisor of a and b.
LCM[a, b] computes the least common multiple of a and b.
ExtendedGCD[a, b] returns {d,{m, n}}, where d is the greatest common divisor of a and b and m and n are integers so that am + bn = d.
PowerMod[a, b, m] computes ab mod m. (If b = −1, this returns the inverse of a modulo m.)
ChineseRemainder[{r1, r2},{m1, m2}] computes the smallest non-negative integer n satisfying n ≡ r1 (mod m1) and n ≡ r2 (mod m2).