Number Theory in SageMath
- a
% m computes a mod m.
Primes().unrank(k) returns the kth prime number, starting with 2 at k = 0.
- n
in Primes() returns True if n is prime and False otherwise.
factor(n) computes the prime factorization of n.
divisors(n) returns a list of all of the positive divisors of n.
number_of_divisors(n) returns the number of positive divisors of n.
euler_phi(n) computes φ(n).
gcd(a, b) computes the greatest common divisor of a and b.
lcm(a, b) computes the least common multiple of a and b.
xgcd(a, b) returns (a, m, n), where d is the greatest common divisor of a and b and m and n are integers so that am + bn = d.
inverse_mod(a, m) computes a−1 mod m.
- a
.powermod(b, m) computes ab mod m.
crt(r1, r2, m1, m2) uses the Chinese remainder theorem to compute the smallest non-negative integer n satisfying n ≡ r1 (mod m1) and n ≡ r2 (mod m2).