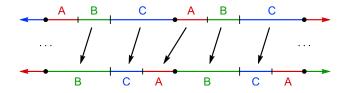
Embeddings into Finitely Presented Simple Groups



Jim Belk, University of Glasgow

Geometry & Topology Seminar, 10 October 2022

・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:

G has solvable word problem

 \Leftrightarrow

G embeds into a finitely presented simple group

・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:

G has solvable word problem G embeds into a finitely presented simple group

Here a group has *solvable word problem* if there exists an algorithm to determine whether a given word in the generators represents the identity.

 \Leftrightarrow

Theorem (Novikov 1955, Boone 1958)

There exist finitely presented groups with unsolvable word problem.

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:

G has solvable word problem

 \Leftrightarrow

G embeds into a finitely presented simple group

・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:

G has solvable word problem

 \Leftrightarrow

G embeds into a finitely presented simple group

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

This conjecture remains open after nearly 50 years.

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:

G has solvable word problem

 \Leftrightarrow

G embeds into a finitely presented simple group

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

This conjecture remains open after nearly 50 years.

Recent progress: Many groups of interest embed into finitely presented simple groups.

Collaborators

Collin Bleak University of St Andrews

James Hyde University of Copenhagen

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Collaborators

Francesco Matucci University of Milano–Bicocca

Matthew Zaremsky SUNY University at Albany

◆□ → ◆□ → ◆三 → ◆三 → 三三

Higman's Embedding Theorem

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Higman's Embedding Theorem

A countable group presentation

```
\langle s_1, s_2, s_3, \ldots | r_1, r_2, r_3, \ldots \rangle
```

is *computable* if there exists an algorithm that outputs the list of relations.

A group is *computably presented* if it admits such a presentation.

Examples

- 1. Any finitely presented group.
- 2. Any finitely generated subgroup of a finitely presented group.

Let G be a finitely generated group. Then:

G is computably presented

G embeds into a finitely presented group

Graham Higman, 1960

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Let G be a finitely generated group. Then:

G is computably presented

 \Leftrightarrow

G embeds into a finitely presented group

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Let G be a finitely generated group. Then:

G is computably presented

G embeds into a finitely presented group

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Corollaries

The following groups embed into finitely presented groups:

 \Leftrightarrow

Let G be a finitely generated group. Then:

G is computably presented

⇔

G embeds into a finitely presented group

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Corollaries

The following groups embed into finitely presented groups:

1. Countably generated groups with a computable presentations.

Follows from Higman–Neumann–Neumann 1949.

Let G be a finitely generated group. Then:

G is computably presented

G embeds into a finitely presented group

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Corollaries

The following groups embed into finitely presented groups:

 \Leftrightarrow

1. Countably generated groups with a computable presentations.

Let G be a finitely generated group. Then:

G is computably presented

 \Leftrightarrow

G embeds into a finitely presented group

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Corollaries

The following groups embed into finitely presented groups:

- 1. Countably generated groups with a computable presentations.
- 2. Countable abelian groups.

Since every such group embeds in $\bigoplus_{\omega} \mathbb{Q} \oplus \bigoplus_{\omega} \mathbb{Q}/\mathbb{Z}$.

Let G be a finitely generated group. Then:

G is computably presented

G embeds into a finitely presented group

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Corollaries

The following groups embed into finitely presented groups:

 \Leftrightarrow

- 1. Countably generated groups with a computable presentations.
- 2. Countable abelian groups.

Let G be a finitely generated group. Then:

G is computably presented

 \Leftrightarrow

G embeds into a finitely presented group

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Corollaries

The following groups embed into finitely presented groups:

- 1. Countably generated groups with a computable presentations.
- 2. Countable abelian groups.

Problem (Higman): Find an explicit and natural example of a finitely presented group that contains \mathbb{Q} .

Let G be a finitely generated group. Then:

G is computably presented

 \Leftrightarrow

G embeds into a finitely presented group

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Let G be a finitely generated group. Then:

G is computably presented

⇔

G embeds into a finitely presented group

This theorem has the form

G has a certain algorithmic property

ac

G embeds into a certain kind of group

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Question (Higman): Are there other theorems of this type?

 \Leftrightarrow

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで

Observation (Kuznecov 1958, Thompson 1969)

Every finitely presented simple group has solvable word problem.

Richard J. Thompson, 2004

ヘロト 人間 ト 人 ヨト 人 ヨト

Observation (Kuznecov 1958, Thompson 1969)

Every finitely presented simple group has solvable word problem.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Observation (Kuznecov 1958, Thompson 1969)

Every finitely presented simple group has solvable word problem.

Proof.

Given a presentation $\langle s_1, \ldots s_m | r_1, \ldots r_n \rangle$ for a simple group *G* and a word *w*, we run two simultaneous searches:

Search #1 Search for a proof that

w = 1

Search #2 Search for a proof that

$$s_1 = \cdots = s_m = 1$$

using the relations r_1, \ldots, r_n . Using w = 1 and r_1, \ldots, r_n .

Eventually one of the searches terminates.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Observation (Kuznecov 1958, Thompson 1969)

Every finitely presented simple group has solvable word problem.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Observation (Kuznecov 1958, Thompson 1969)

Every finitely presented simple group has solvable word problem.

Thompson mentioned this result at a 1969 conference in Irvine, California. Higman and William Boone were both in the audience.

William and Eileen Boone, 1979

ション 小田 マイビット ビックタン

They recognized Thompson's observation as a group-theoretic analogue of a basic observation in logic:

Observation

Every complete theory with finitely many axioms is decidable.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

They recognized Thompson's observation as a group-theoretic analogue of a basic observation in logic:

Observation

Every complete theory with finitely many axioms is decidable.

Logic	Group Theory
axiomatic system	group presentation

They recognized Thompson's observation as a group-theoretic analogue of a basic observation in logic:

Observation

Every complete theory with finitely many axioms is decidable.

Logic	Group Theory
axiomatic system	group presentation
axioms	relations

They recognized Thompson's observation as a group-theoretic analogue of a basic observation in logic:

Observation

Every complete theory with finitely many axioms is decidable.

Logic	Group Theory
axiomatic system	group presentation
axioms	relations
inconsistent theory	trivial group

They recognized Thompson's observation as a group-theoretic analogue of a basic observation in logic:

Observation

Every complete theory with finitely many axioms is decidable.

Logic	Group Theory
axiomatic system	group presentation
axioms	relations
inconsistent theory	trivial group
complete theory	simple group

They recognized Thompson's observation as a group-theoretic analogue of a basic observation in logic:

Observation

Every complete theory with finitely many axioms is decidable.

Logic	Group Theory
axiomatic system	group presentation
axioms	relations
inconsistent theory	trivial group
complete theory	simple group
decidable theory	decidable word problem

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:

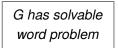
G has solvable word problem

 \Leftrightarrow

G embeds into a finitely presented simple group

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:



 \Leftrightarrow

G embeds into a finitely presented simple group

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Note: By a result of Clapham (1965), it would suffice to prove the conjecture for finitely presented groups.

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:

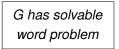
G has solvable word problem

 \Leftrightarrow

G embeds into a finitely presented simple group

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:



 \Leftrightarrow

G embeds into a finitely presented simple group

Like Higman's embedding theorem, this statement has the form

G has a certain algorithmic property

 \Leftrightarrow

G embeds into a certain kind of group

・ロト・日本・ モー・ モー うくぐ

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:

G has solvable word problem

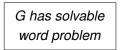
 \Leftrightarrow

G embeds into a finitely presented simple group

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:



 \Leftrightarrow

G embeds into a finitely presented simple group

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

As a corollary, the following groups would also embed into finitely presented simple groups:

- 1. Any computably presented group with solvable word problem.
- 2. Any countable abelian group.

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:

G has solvable word problem

 \Leftrightarrow

G embeds into a finitely presented simple group

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:

G has solvable word problem

 \Leftrightarrow

G embeds into a finitely presented simple group

Theorem (Boone–Higman 1974)

Let G be a finitely generated group. Then:

G has solvable word problem

 \Leftrightarrow

G embeds into a computably presented simple group

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Every finitely generated group G with solvable word problem embeds into a computably presented simple group.

Sketch of Proof. We want a simple group that contains *G*.

Every finitely generated group G with solvable word problem embeds into a computably presented simple group.

Sketch of Proof. We want a simple group that contains *G*.

Simple = The normal closure of any non-identity element is the whole group.

Every finitely generated group G with solvable word problem embeds into a computably presented simple group.

Sketch of Proof. We want a simple group that contains *G*.

Simple = The normal closure of any non-identity element is the whole group.

Trick: Given words $u, v \neq_G 1$, consider the group

$$G' = \left\langle G, x, t \mid (uu^{x})^{t} = u^{x}v \right\rangle.$$

・ロト・西ト・ヨト・ヨト・ 日・ つへの

G' is an HNN extension of $G * \langle x \rangle$, so *G* embeds into *G'*.

Every finitely generated group G with solvable word problem embeds into a computably presented simple group.

Sketch of Proof. We want a simple group that contains *G*.

Simple = The normal closure of any non-identity element is the whole group.

Trick: Given words $u, v \neq_G 1$, consider the group

$$G' = \left\langle G, x, t \mid (uu^x)^t = u^x v \right\rangle.$$

・ロト・西ト・ヨト・ヨト・ 日・ つへの

G' is an HNN extension of $G * \langle x \rangle$, so *G* embeds into *G'*.

But now *v* lies in the normal closure of *u*.

Every finitely generated group G with solvable word problem embeds into a computably presented simple group.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Sketch of Proof.

Every finitely generated group G with solvable word problem embeds into a computably presented simple group.

Sketch of Proof. Let

$$\sigma(G) = \left\langle G, x, t_1, t_2, \dots \mid (u_i u_i^x)^{t_i} = u_i^x v_i \right\rangle$$

where (u_i, v_i) is an enumeration of *all* pairs of non-identity words in *G*.

Every finitely generated group G with solvable word problem embeds into a computably presented simple group.

Sketch of Proof. Let

$$\sigma(G) = \left\langle G, x, t_1, t_2, \dots \mid (u_i u_i^x)^{t_i} = u_i^x v_i \right\rangle$$

where (u_i, v_i) is an enumeration of *all* pairs of non-identity words in *G*.

Then *G* embeds into $\sigma(G)$, and the normal closure of any non-identity element of *G* contains *G*.

Every finitely generated group G with solvable word problem embeds into a computably presented simple group.

Sketch of Proof. Let

$$\sigma(G) = \left\langle G, x, t_1, t_2, \dots \mid (u_i u_i^x)^{t_i} = u_i^x v_i \right\rangle$$

where (u_i, v_i) is an enumeration of *all* pairs of non-identity words in *G*.

Then *G* embeds into $\sigma(G)$, and the normal closure of any non-identity element of *G* contains *G*.

The desired simple group is the union of the sequence

$$G \leq \sigma(G) \leq \sigma^2(G) \leq \sigma^3(G) \leq \cdots$$

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:

G has solvable word problem

 \Leftrightarrow

G embeds into a finitely presented simple group

Theorem (Boone–Higman 1974)

Let G be a finitely generated group. Then:

G has solvable word problem

 \Leftrightarrow

G embeds into a computably presented simple group

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:

G has solvable word problem

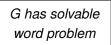
 \Leftrightarrow

G embeds into a finitely presented simple group

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:



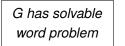
 \Leftrightarrow

G embeds into a finitely presented simple group

Theorem (Thompson 1980)

Let G be a finitely generated group. Then:

 \Leftrightarrow



G embeds into a finitely generated, computably presented simple group

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:

G has solvable word problem

 \Leftrightarrow

G embeds into a finitely presented simple group

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:

G has solvable word problem

 \Leftrightarrow

G embeds into a finitely presented simple group

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

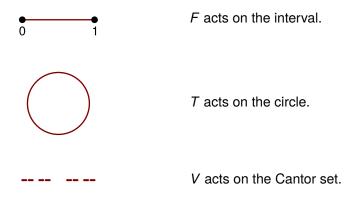
Theorem (Sacerdote 1977)

There are analogues of Boone and Higman's theorem for the order, conjugacy, power, and subgroup membership problems.

Finitely Presented Simple Groups

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで

In 1965, Richard J. Thompson defined three infinite groups.



▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

In 1965, Richard J. Thompson defined three infinite groups.

F acts on the interval. **finitely presented**

T acts on the circle. **finitely presented, simple**

V acts on the Cantor set. **finitely presented, simple**

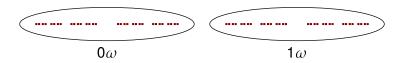
◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

The *Cantor set C* is the infinite product space $\{0, 1\}^{\omega}$.

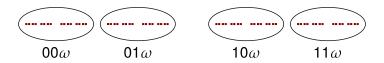
・ロト・雪・・曲・・曲・ しょうくの

The **Cantor set** C is the infinite product space $\{0, 1\}^{\omega}$.



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The *Cantor set C* is the infinite product space $\{0, 1\}^{\omega}$.



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The *Cantor set C* is the infinite product space $\{0, 1\}^{\omega}$.

A *dyadic subdivision* of *C* is any subdivision obtained by repeatedly cutting pieces in half.

The *Cantor set C* is the infinite product space $\{0, 1\}^{\omega}$.

The **Cantor set** C is the infinite product space $\{0, 1\}^{\omega}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

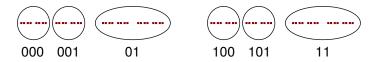
The **Cantor set** C is the infinite product space $\{0, 1\}^{\omega}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

The **Cantor set** C is the infinite product space $\{0, 1\}^{\omega}$.

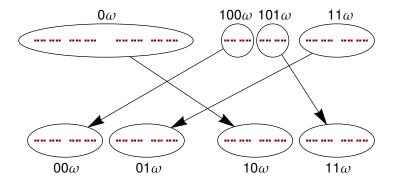
◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

The **Cantor set** C is the infinite product space $\{0, 1\}^{\omega}$.



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Thompson's group V is the group of all homeomorphisms that map "linearly" between the pieces of two dyadic subdivisions.



This group V is finitely presented and simple.

V acts by homeomorphisms on the Cantor set.

F and T are subgroups of V.

V acts by homeomorphisms on the Cantor set.

F and T are subgroups of V.

F is the subgroup of *V* that preserves the linear order.

▲ロト ▲ 同 ト ▲ 国 ト → 国 → の Q (~)

V acts by homeomorphisms on the Cantor set.

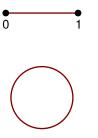
F and T are subgroups of V.

F is the subgroup of *V* that preserves the linear order.

T is the subgroup of *V* that preserves the circular order.

V acts by homeomorphisms on the Cantor set.

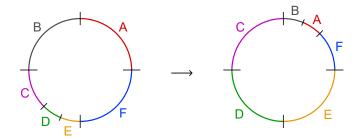
F and T are subgroups of V.



F is the subgroup of *V* that preserves the linear order. **finitely presented**

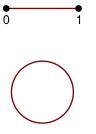
T is the subgroup of *V* that preserves the circular order. **finitely presented, simple**

For example, here is an element of Thompson's group *T*.



イロト イポト イヨト イヨト

Thompson's Groups



F acts on the interval. **finitely presented**

T acts on the circle. **finitely presented, simple**

V acts on the Cantor set. finitely presented, simple

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Subgroups of V

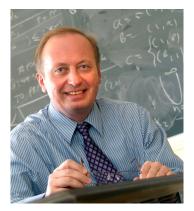
The following groups embed into *V*:

- 1. All finite groups, free groups, and free abelian groups.
- 2. (Higman 1974, Brown 1987) Generalised Thompson groups F_n , T_n , and V_n .
- 3. (Röver 1999) Free products of finitely many finite groups.
- 4. (Guba-Sapir 1999, Bleak 2008) Many solvable groups.

5. (Bleak–Kassabov–Matucci 2011) \mathbb{Q}/\mathbb{Z} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

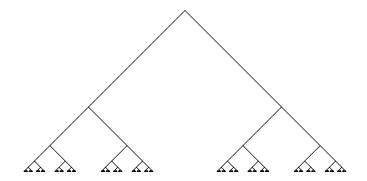
Grigorchuk (1979) defined a certain finitely generated group $\mathcal{G} \leq \operatorname{Aut}(T_2)$.



Rostislav Grigorchuk

Grigorchuk (1979) defined a certain finitely generated group $\mathcal{G} \leq \operatorname{Aut}(T_2)$.

Grigorchuk (1979) defined a certain finitely generated group $\mathcal{G} \leq Aut(T_2)$.



Grigorchuk (1979) defined a certain finitely generated group $\mathcal{G} \leq \operatorname{Aut}(T_2)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

Grigorchuk (1979) defined a certain finitely generated group $\mathcal{G} \leq \operatorname{Aut}(T_2)$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

The boundary ∂T_2 is the Cantor set $\{0, 1\}^{\omega}$. \mathcal{G} acts by homeomorphisms on this Cantor set.

Grigorchuk (1979) defined a certain finitely generated group $\mathcal{G} \leq \operatorname{Aut}(T_2)$.

The boundary ∂T_2 is the Cantor set $\{0, 1\}^{\omega}$. \mathcal{G} acts by homeomorphisms on this Cantor set.

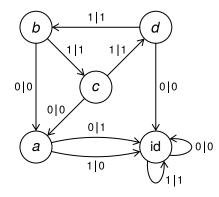
Grigorchuk (1979) defined a certain finitely generated group $\mathcal{G} \leq \operatorname{Aut}(T_2)$.

The boundary ∂T_2 is the Cantor set $\{0, 1\}^{\omega}$. \mathcal{G} acts by homeomorphisms on this Cantor set.

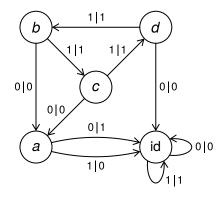
Properties of G (Grigorchuk 1979 and 1984)

- G is a solution to the Burnside problem: it is infinite and finitely generated, and every element has finite order.
- ▶ G has intermediate growth: the number of elements of length less than *n* grows like exp($n^{0.7675}$) (Erschler–Zheng 2020).

The action of \mathcal{G} on binary sequences in $\{0, 1\}^{\omega}$ can be described by *automata*.

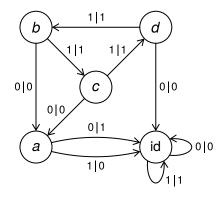


The action of \mathcal{G} on binary sequences in $\{0, 1\}^{\omega}$ can be described by *automata*.



 $c(1 1 0 1 0 1 1 0 1 \cdots)$

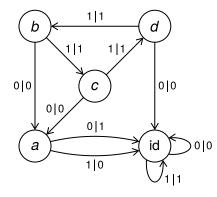
The action of \mathcal{G} on binary sequences in $\{0, 1\}^{\omega}$ can be described by *automata*.



$$c(1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ \cdots)$$

= 1 \cdot d(1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ \cdots)

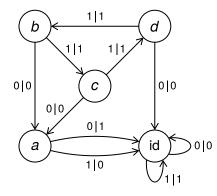
The action of \mathcal{G} on binary sequences in $\{0, 1\}^{\omega}$ can be described by *automata*.



$$c(1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ \cdots)$$

= 1 \cdot d(1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ \cdots)
= 1 \ 1 \cdot b(0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ \cdot 1 \ 0 \ 1 \ \cdots)

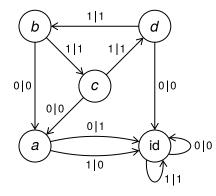
The action of \mathcal{G} on binary sequences in $\{0, 1\}^{\omega}$ can be described by *automata*.



$$c(1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ \cdots)$$

= 1 \cdot d(1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ \cdots)
= 1 \ 1 \cdot b(0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ \cdots)
= 1 \ 1 \ 0 \cdot a(1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ \cdots)

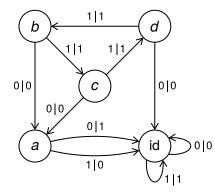
The action of \mathcal{G} on binary sequences in $\{0, 1\}^{\omega}$ can be described by *automata*.



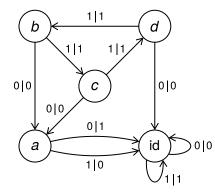
$$c(1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ \cdots)$$

= 1 \cdot d(1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ \cdots)
= 1 \ 1 \cdot b(0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ \cdots)
= 1 \ 1 \ 0 \cdot id(0 \ 1 \ 0 \ 1 \ 0 \ 1 \ \cdots)

The action of \mathcal{G} on binary sequences in $\{0, 1\}^{\omega}$ can be described by *automata*.



The action of \mathcal{G} on binary sequences in $\{0, 1\}^{\omega}$ can be described by *automata*.



$$c(1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ \cdots)$$

= 1 \cdot d(1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ \cdots)
= 1 \ 1 \cdot b(0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ \cdots)
= 1 \ 1 \ 0 \cdot \ id(0 \ 1 \ 0 \ 1 \ 0 \ 1 \ \cdots)
= 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ \cdots)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○ ○

Every element of \mathcal{G} has such an automaton.

Does G embed into Thompson's group V?

Does G embed into Thompson's group V?

Theorem (Röver 1999)

No. If $H \leq V$ is finitely generated and every element of H has finite order, then H is finite.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Does G embed into Thompson's group V?

Theorem (Röver 1999)

No. If $H \leq V$ is finitely generated and every element of H has finite order, then H is finite.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Does G embed into a finitely presented simple group?

Does G embed into Thompson's group V?

Theorem (Röver 1999)

No. If $H \leq V$ is finitely generated and every element of H has finite order, then H is finite.

Does G embed into a finitely presented simple group?

Theorem (Röver 1999)

Yes. The group VG generated by V and G is finitely presented and simple!

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

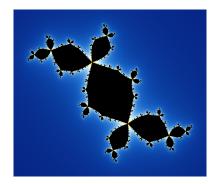
Nekrashevych (2005) generalized Grigorchuk's group to the family of *contracting self-similar groups* $G \le Aut(T_d)$.

Volodymyr Nekrashevych

Nekrashevych (2005) generalized Grigorchuk's group to the family of *contracting self-similar groups* $G \le Aut(T_d)$.

Nekrashevych (2005) generalized Grigorchuk's group to the family of *contracting self-similar groups* $G \le Aut(T_d)$.

These include the "iterated monodromy groups" associated to complex dynamical systems.



Nekrashevych (2005) generalized Grigorchuk's group to the family of *contracting self-similar groups* $G \le Aut(T_d)$.

Nekrashevych (2005) generalized Grigorchuk's group to the family of *contracting self-similar groups* $G \le Aut(T_d)$.

Each such G has an associated **Nekrashevych group** V_dG .

Nekrashevych (2005) generalized Grigorchuk's group to the family of *contracting self-similar groups* $G \leq Aut(T_d)$.

Each such G has an associated **Nekrashevych group** V_dG .

Theorem (Nekrashevych 2013)

Every Nekrashevych group V_dG is finitely presented.

Nekrashevych (2005) generalized Grigorchuk's group to the family of *contracting self-similar groups* $G \le Aut(T_d)$.

Each such G has an associated **Nekrashevych group** V_dG .

Theorem (Nekrashevych 2013)

Every Nekrashevych group V_dG is finitely presented.

Nekrashevych also gave necessary and sufficient conditions for V_dG to be simple.

This gives Boone–Higman embeddings for *some* contracting self-similar groups.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Brin (2004) defined a group 2V acting on the Cantor square.

Matthew Brin

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Brin (2004) defined a group 2V acting on the Cantor square.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

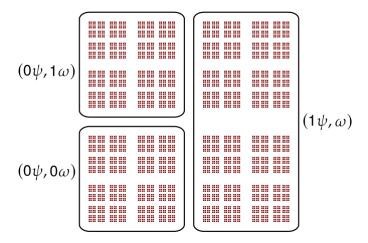
Brin (2004) defined a group 2V acting on the Cantor square.

(01)		$(1\psi,\omega)$
$(0\psi,\omega)$		(ψ, ω)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

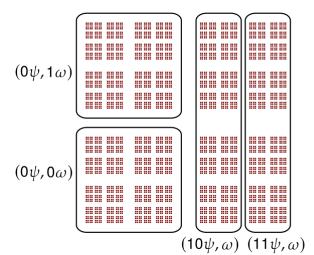
)

Brin (2004) defined a group 2V acting on the Cantor square.



▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Brin (2004) defined a group 2V acting on the Cantor square.

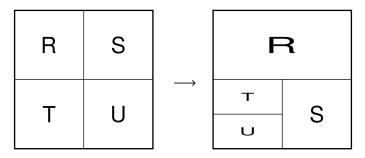


Elements of 2V map "linearly" between two subdivisions.

 		\longrightarrow		

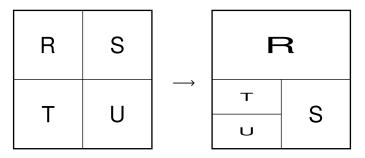
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Elements of 2V map "linearly" between two subdivisions.



◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三三 - のへで

Elements of 2V map "linearly" between two subdivisions.



▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

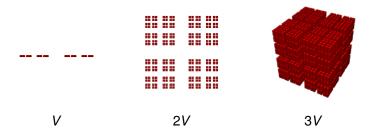
Theorem (Brin 2004)

The group 2V is finitely presented and simple.

Brin defined a family of groups nV ($n \ge 1$) similarly, with 1V = V.

. . .

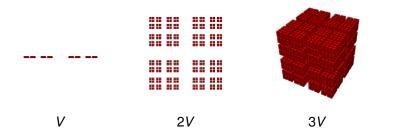
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ



Brin defined a family of groups nV ($n \ge 1$) similarly, with 1V = V.

. . .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @



Theorem (Brin 2009)

The group nV is finitely presented and simple for all $n \ge 1$.

These groups have very interesting algorithmic properties.

```
Theorem (B–Bleak 2014)
The order problem in nV is unsolvable for n \ge 2
```

Theorem (B-Bleak-Matucci 2016)

The subgroup membership problem in nV is unsolvable for $n \ge 2$.

Theorem (Salo 2020)

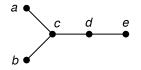
The conjugacy problem in nV is unsolvable for $n \ge 2$.

Right-angled Artin groups

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Right-angled Artin groups

Given a finite graph F



the corresponding **right-angled Artin group (RAAG)** has one generator for each vertex, with edges corresponding to generators that commute:

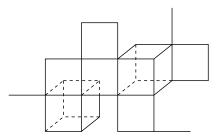
$$A_{\Gamma} = \langle a, b, c, d, e \mid ac = ca, bc = cb, cd = dc, de = ed \rangle.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Right-angled Artin groups

RAAG's are very interesting from an embeddings perspective.

Haglund and Wise (2008) have shown that the fundamental group of any (compact) *special cube complex* embeds into a RAAG.



Such complexes were crucial to the proof of the virtual Haken conjecture (Agol 2012).

ション 小田 マイビット ビックタン

Virtually Special Groups

A group is *virtually special* if it has a finite-index subgroup isomorphic to $\pi_1(X)$ for some special cube complex *X*.

The class of virtually special groups includes:

- 1. All right-angled Artin groups.
- 2. (Haglund–Wise 2010) All finitely generated Coxeter groups.
- 3. (Agol 2012) All cubulated hyperbolic groups.
- (Agol 2012) Fundamental groups of finite-volume hyperbolic 3-manifolds.
- 5. (Przytycki–Wise 2012) Fundamental groups of compact Riemannian 3-manifolds of non-positive curvature.

Virtually Special Groups

Theorem (B-Bleak-Matucci 2016)

If a group G has a finite-index subgroup that embeds into a RAAG, then G embeds into one of Brin's groups nV.

Corollary

Every virtually special group embeds into a finitely presented simple group.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Virtually Special Groups

Salo (2021) has recently shown that in fact all virtually special groups embed into Brin's group 2V.

	\rightarrow		

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで

Problem (Higman): Find an explicit and natural example of a finitely presented group that contains \mathbb{Q} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Problem (Higman): Find an explicit and natural example of a finitely presented group that contains \mathbb{Q} .

In 1999, Martin Bridson and Pierre de la Harpe submitted this question to the Kourovka notebook as a "well-known" problem.

Bridson also mentioned this problem in his article on Geometric and Combinatorial Group Theory in the *Princeton Companion to Mathematics* (2008).

Problem (Higman): Find an explicit and natural example of a finitely presented group that contains \mathbb{Q} .

In 1999, Martin Bridson and Pierre de la Harpe submitted this question to the Kourovka notebook as a "well-known" problem.

Bridson also mentioned this problem in his article on Geometric and Combinatorial Group Theory in the *Princeton Companion to Mathematics* (2008).

In 2020, James Hyde, Francesco Matucci, and I noticed an elementary solution.

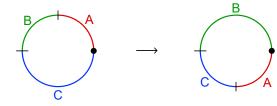
Recall that Thompson's group T acts on S^1 .

A *lift* of an element $g \in T$ is a homeomorphism $\overline{g} \colon \mathbb{R} \to \mathbb{R}$ that makes the following diagram commute:

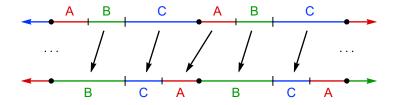
Note: If \overline{g} is a lift of g then so is $\overline{g} + n$ for any $n \in \mathbb{Z}$.

Let \overline{T} be the group of all lifts of elements of T.

For example, here's an element of T:



and here's one possible lift in \overline{T} :



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Theorem (B–Hyde–Matucci 2020) The group \overline{T} is finitely presented and contains \mathbb{Q} .

$$\overline{T} = \left\langle a, b \mid a^4 b^{-3}, (ba)^5 b^{-9}, [bab, a^2 baba^2], \\ [bab, a^2 b^2 a^2 baba^2 ba^2] \right\rangle$$

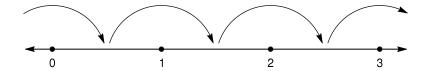
Note: We did not introduce this group \overline{T} . It had previously appeared in the work of Ghys and Sergiescu (1987).

Theorem (B–Hyde–Matucci 2020) The group \overline{T} is finitely presented and contains \mathbb{Q} .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○ ○

Theorem (B–Hyde–Matucci 2020) The group \overline{T} is finitely presented and contains \mathbb{Q} .

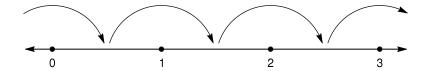
Proof. Start with the element $f_1(t) = t + 1$:



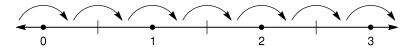
◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ ─ 圖

Theorem (B–Hyde–Matucci 2020) The group \overline{T} is finitely presented and contains \mathbb{Q} .

Proof. Start with the element $f_1(t) = t + 1$:



It's easy to find a square root f_2 of f_1 :



(日)

Theorem (B–Hyde–Matucci 2020) The group \overline{T} is finitely presented and contains \mathbb{Q} .

Proof. Now construct a cube root f_3 of f_2 :

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Theorem (B–Hyde–Matucci 2020) The group \overline{T} is finitely presented and contains \mathbb{Q} .

Proof. Now construct a cube root f_3 of f_2 :



Theorem (B–Hyde–Matucci 2020) The group \overline{T} is finitely presented and contains \mathbb{Q} .

Proof. Now construct a cube root f_3 of f_2 :

Next, construct a fourth root f_4 of f_3 :

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Theorem (B–Hyde–Matucci 2020) The group \overline{T} is finitely presented and contains \mathbb{Q} .

Proof. Now construct a cube root f_3 of f_2 :

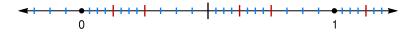
Next, construct a fourth root f_4 of f_3 :

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ う へ つ >

Theorem (B–Hyde–Matucci 2020) The group \overline{T} is finitely presented and contains \mathbb{Q} .

Proof. Now construct a cube root f_3 of f_2 :

Next, construct a fourth root f_4 of f_3 :



п

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ う へ つ >

Then $\langle f_1, f_2, f_3, f_4, \ldots \rangle \cong \mathbb{Q}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Theorem (B–Hyde–Matucci 2022)

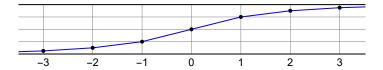
Every countable abelian group embeds into a finitely presented simple group.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Theorem (B-Hyde-Matucci 2022)

Every countable abelian group embeds into a finitely presented simple group.

Sketch of Proof. Conjugating \overline{T} by a homeomorphism $\mathbb{R} \to (0, 1)$ gives an action of \overline{T} on [0, 1]



・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

Theorem (B-Hyde-Matucci 2022)

Every countable abelian group embeds into a finitely presented simple group.

Sketch of Proof. Conjugating \overline{T} by a homeomorphism $\mathbb{R} \to (0, 1)$ gives an action of \overline{T} on [0, 1]

Theorem (B-Hyde-Matucci 2022)

Every countable abelian group embeds into a finitely presented simple group.

Sketch of Proof. Conjugating \overline{T} by a homeomorphism $\mathbb{R} \to (0, 1)$ gives an action of \overline{T} on [0, 1]

Cutting along the dyadics gives an action of \overline{T} on the Cantor set.

Theorem (B–Hyde–Matucci 2022)

Every countable abelian group embeds into a finitely presented simple group.

Sketch of Proof. Conjugating \overline{T} by a homeomorphism $\mathbb{R} \to (0, 1)$ gives an action of \overline{T} on [0, 1]

Cutting along the dyadics gives an action of \overline{T} on the Cantor set.

Theorem (B–Hyde–Matucci 2022)

Every countable abelian group embeds into a finitely presented simple group.

Sketch of Proof. Conjugating \overline{T} by a homeomorphism $\mathbb{R} \to (0, 1)$ gives an action of \overline{T} on [0, 1]

Cutting along the dyadics gives an action of \overline{T} on the Cantor set.

We prove that the group $V\overline{T}$ generated by V and \overline{T} is finitely presented, simple, and contains $\bigoplus_{\omega} \mathbb{Q} \oplus \bigoplus_{\omega} \mathbb{Q}/\mathbb{Z}$.

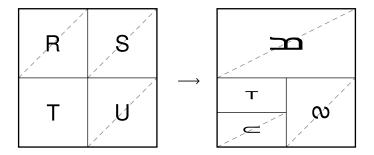
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Twisting Brin's Groups

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで

Twisting Brin's Groups

In 2020, Matthew Zaremsky and I considered a "twisted" version of Brin's group 2V.



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

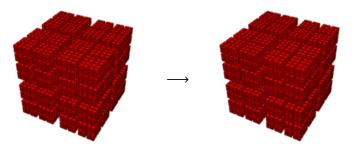
э.

Twisting Brin's Groups

In 2020, Matthew Zaremsky and I considered a "twisted" version of Brin's group 2V.

In 2020, Matthew Zaremsky and I considered a "twisted" version of Brin's group 2*V*.

In general, you can twist nV by any group of permutations of $\{1, \ldots, n\}$.



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

In 2020, Matthew Zaremsky and I considered a "twisted" version of Brin's group 2*V*.

In general, you can twist nV by any group of permutations of $\{1, \ldots, n\}$.

In 2020, Matthew Zaremsky and I considered a "twisted" version of Brin's group 2*V*.

In general, you can twist nV by any group of permutations of $\{1, \ldots, n\}$.

You can even twist ωV by a finitely generated group *G* of permutations of an infinite set *X*.

In 2020, Matthew Zaremsky and I considered a "twisted" version of Brin's group 2*V*.

In general, you can twist nV by any group of permutations of $\{1, \ldots, n\}$.

You can even twist ωV by a finitely generated group *G* of permutations of an infinite set *X*.

Theorem (B-Zaremsky 2020)

Any twisted ωV is simple, and is finitely generated as long as the action of G on X is transitive.

In 2020, Matthew Zaremsky and I considered a "twisted" version of Brin's group 2V.

In general, you can twist nV by any group of permutations of $\{1, \ldots, n\}$.

You can even twist ωV by a finitely generated group *G* of permutations of an infinite set *X*.

Theorem (B-Zaremsky 2020)

Any twisted ωV is simple, and is finitely generated as long as the action of G on X is transitive.

Corollary (B-Zaremsky 2020)

Any finitely generated group G embeds isometrically into a finitely generated simple group.

We can also get finitely presented simple groups.

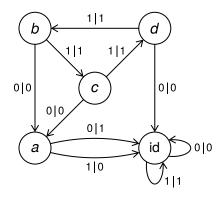
Theorem (B–Zaremsky 2020, Zaremsky 2022) *Suppose:*

- 1. G is finitely presented,
- 2. G acts highly transitively on a set X, and
- 3. Stabilizers of finite subsets of X are finitely generated.

Then the resulting twisted ωV is a finitely presented simple group that contains G.

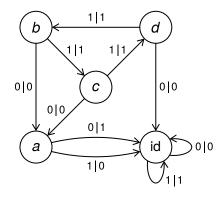
Corollary

Every contracting self-similar embeds into a finitely presented simple group.



Corollary

Every contracting self-similar embeds into a finitely presented simple group.

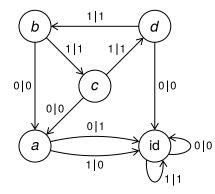


Sketch of Proof.

The Nekrashevych group V_dG is finitely presented, highly transitive on any orbit, and has finitely generated stabilizers, so the resulting twisted ωV is finitely presented and simple.

Corollary

Every contracting self-similar embeds into a finitely presented simple group.



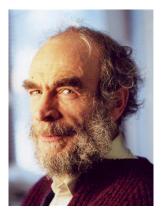
Sketch of Proof.

The Nekrashevych group V_dG is finitely presented, highly transitive on any orbit, and has finitely generated stabilizers, so the resulting twisted ωV is finitely presented and simple.

We can similarly handle many other "Thompson-like" groups.

▲□▶ ▲圖▶ ▲ 臣▶ ▲臣▶ 三臣 - のへぐ

Gromov (1987) defined a finitely generated group to be *hyperbolic* if its Cayley graph satisfies the δ -thin triangles condition.

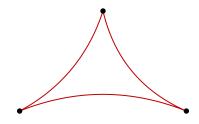


Misha Gromov

Gromov (1987) defined a finitely generated group to be *hyperbolic* if its Cayley graph satisfies the δ -thin triangles condition.

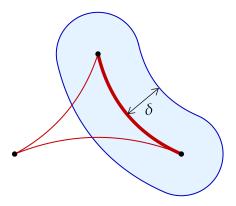
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Gromov (1987) defined a finitely generated group to be *hyperbolic* if its Cayley graph satisfies the δ -thin triangles condition.

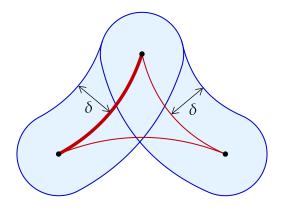


▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

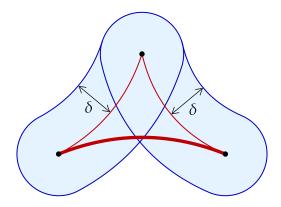
Gromov (1987) defined a finitely generated group to be *hyperbolic* if its Cayley graph satisfies the δ -thin triangles condition.



Gromov (1987) defined a finitely generated group to be *hyperbolic* if its Cayley graph satisfies the δ -thin triangles condition.



Gromov (1987) defined a finitely generated group to be *hyperbolic* if its Cayley graph satisfies the δ -thin triangles condition.

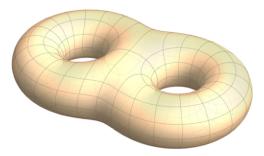


Gromov (1987) defined a finitely generated group to be *hyperbolic* if its Cayley graph satisfies the δ -thin triangles condition.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Gromov (1987) defined a finitely generated group to be *hyperbolic* if its Cayley graph satisfies the δ -thin triangles condition.

For example, the fundamental group of any compact hyperbolic manifold is a hyperbolic group.



Gromov (1987) defined a finitely generated group to be *hyperbolic* if its Cayley graph satisfies the δ -thin triangles condition.

For example, the fundamental group of any compact hyperbolic manifold is a hyperbolic group.

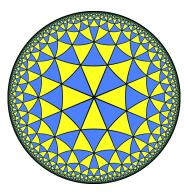
Gromov (1987) defined a finitely generated group to be *hyperbolic* if its Cayley graph satisfies the δ -thin triangles condition.

For example, the fundamental group of any compact hyperbolic manifold is a hyperbolic group.

In a certain precise sense, almost every finitely presented group is hyperbolic (Ol'Shanskii 1991).

Theorem (B-Bleak-Matucci-Zaremsky 2022)

Every hyperbolic group G embeds into a finitely presented simple group.



Theorem (B-Bleak-Matucci-Zaremsky 2022)

Every hyperbolic group G embeds into a finitely presented simple group.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○ ○

Theorem (B–Bleak–Matucci–Zaremsky 2022)

Every hyperbolic group G embeds into a finitely presented simple group.

Ingredients in the Proof:

1. *G* has a *horofunction boundary* $\partial_h G$, which is compact and totally disconnected.

Theorem (B–Bleak–Matucci–Zaremsky 2022)

Every hyperbolic group G embeds into a finitely presented simple group.

Ingredients in the Proof:

- 1. *G* has a *horofunction boundary* $\partial_h G$, which is compact and totally disconnected.
- 2. Consider the group V[G] of all homeomorphisms of $\partial_h G$ that piecewise agree with elements of *G*.

Theorem (B–Bleak–Matucci–Zaremsky 2022)

Every hyperbolic group G embeds into a finitely presented simple group.

Ingredients in the Proof:

- 1. *G* has a *horofunction boundary* $\partial_h G$, which is compact and totally disconnected.
- 2. Consider the group V[G] of all homeomorphisms of $\partial_h G$ that piecewise agree with elements of *G*.
- 3. Prove that *V*[*G*] is finitely presented, highly transitive on some orbit, and has finitely generated stabilizers.

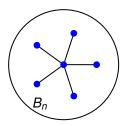
Theorem (B–Bleak–Matucci–Zaremsky 2022)

Every hyperbolic group G embeds into a finitely presented simple group.

Ingredients in the Proof:

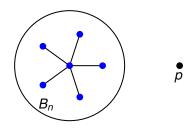
- 1. *G* has a *horofunction boundary* $\partial_h G$, which is compact and totally disconnected.
- 2. Consider the group V[G] of all homeomorphisms of $\partial_h G$ that piecewise agree with elements of *G*.
- 3. Prove that *V*[*G*] is finitely presented, highly transitive on some orbit, and has finitely generated stabilizers.
- 4. Conclude that V[G] embeds into a twisted ωV which is finitely presented and simple.

The *horofunction boundary* $\partial_h G$ is defined as follows.



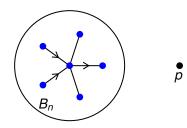
▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで

The *horofunction boundary* $\partial_h G$ is defined as follows.

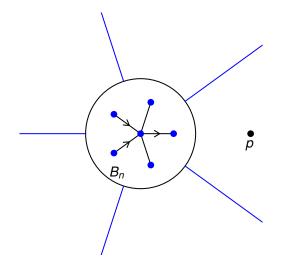


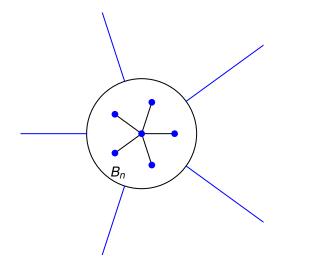
▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで

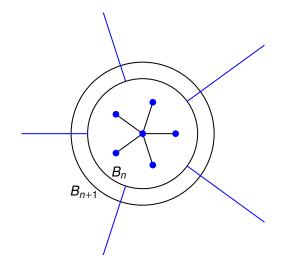
The *horofunction boundary* $\partial_h G$ is defined as follows.

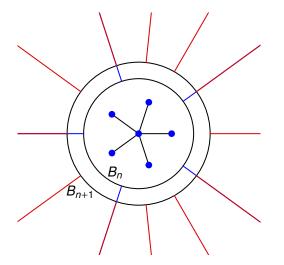


▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで





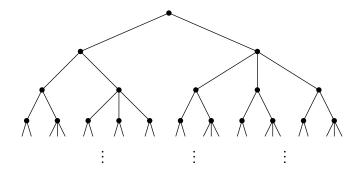




The *horofunction boundary* $\partial_h G$ is defined as follows.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

The *horofunction boundary* $\partial_h G$ is defined as follows.

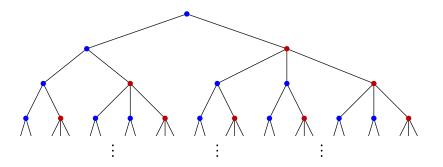


・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

This is the *tree of atoms*. Its space of ends is $\partial_h G$.

Theorem (B–Bleak–Matucci 2018) If G is a hyperbolic group, then:

- 1. The tree of atoms has a self-similar structure, and
- 2. G acts on $\partial_h G$ by asynchronous automata.



Theorem (B-Bleak-Matucci 2018)

If G is a hyperbolic group, then:

1. The tree of atoms has a self-similar structure, and

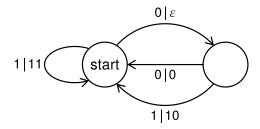
▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

2. G acts on $\partial_h G$ by asynchronous automata.

Theorem (B–Bleak–Matucci 2018)

If G is a hyperbolic group, then:

- 1. The tree of atoms has a self-similar structure, and
- 2. G acts on $\partial_h G$ by asynchronous automata.



Theorem (B-Bleak-Matucci 2018)

If G is a hyperbolic group, then:

1. The tree of atoms has a self-similar structure, and

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

2. G acts on $\partial_h G$ by asynchronous automata.

Theorem (B–Bleak–Matucci 2018)

If G is a hyperbolic group, then:

- 1. The tree of atoms has a self-similar structure, and
- 2. G acts on $\partial_h G$ by asynchronous automata.

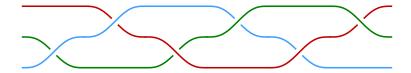
Theorem (B–Bleak–Matucci–Zaremsky 2022)

The action of G on $\partial_h G$ is contracting, and hence V[G] is finitely presented.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Open Question: Do mapping class groups and braid groups embed into finitely presented simple groups?



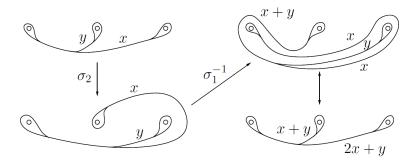
▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで

Open Question: Do mapping class groups and braid groups embed into finitely presented simple groups?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Open Question: Do mapping class groups and braid groups embed into finitely presented simple groups?

Thurston showed that Mod(S) acts on the boundary of Teich(S) by **piecewise integral projective** (PIP) transformations.



・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

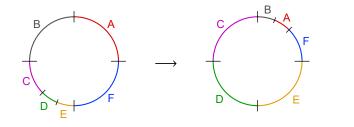
Open Question: Do mapping class groups and braid groups embed into finitely presented simple groups?

Thurston showed that Mod(S) acts on the boundary of Teich(S) by **piecewise integral projective** (PIP) transformations.

Open Question: Do mapping class groups and braid groups embed into finitely presented simple groups?

Thurston showed that Mod(S) acts on the boundary of Teich(S) by **piecewise integral projective** (PIP) transformations.

He also observed that the group of all PIP homeomorphisms of a circle is isomorphic to Thompson's group T.



- ロト - 周ト - ヨト - ヨト -

Open Question: Do mapping class groups and braid groups embed into finitely presented simple groups?

Thurston showed that Mod(S) acts on the boundary of Teich(S) by **piecewise integral projective** (PIP) transformations.

He also observed that the group of all PIP homeomorphisms of a circle is isomorphic to Thompson's group T.

Open Question: Do mapping class groups and braid groups embed into finitely presented simple groups?

Thurston showed that Mod(S) acts on the boundary of Teich(S) by **piecewise integral projective** (PIP) transformations.

He also observed that the group of all PIP homeomorphisms of a circle is isomorphic to Thompson's group T.

Open Question (Thurston): For $n \ge 2$, is the group of all PIP homeomorphisms of S^n finitely generated?

Open Question: Do mapping class groups and braid groups embed into finitely presented simple groups?

Thurston showed that Mod(S) acts on the boundary of Teich(S) by **piecewise integral projective** (PIP) transformations.

He also observed that the group of all PIP homeomorphisms of a circle is isomorphic to Thompson's group T.

Open Question (Thurston): For $n \ge 2$, is the group of all PIP homeomorphisms of S^n finitely generated?

If $PIP(S^n)$ is finitely presented and simple, this would give Boone–Higman embeddings for all mapping class groups.

The End

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ○ 臣 ○ の Q @