Hyperbolic Groups Satisfy the Boone–Higman Conjecture

Jim Belk, University of Glasgow

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Collaborators

Collin Bleak U. of St Andrews

Francesco Matucci U. of Milano–Bicocca

Matthew Zaremsky SUNY at Albany

◆□ → ◆圖 → ◆ 国 → ◆ 国 → ○ 国

Main Theorem (B-Bleak-Matucci-Zaremsky 2023)

Every hyperbolic group embeds into a finitely presented simple group.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Main Theorem (B–Bleak–Matucci–Zaremsky 2023)

Every hyperbolic group embeds into a finitely presented simple group.

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:

G has solvable word problem

 \Leftrightarrow

G embeds into a finitely presented simple group

Note: The (\Leftarrow) direction is easy, but (\Rightarrow) is open.

The Boone–Higman Conjecture

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで

Higman's Embedding Theorem

Let G be a f.g. group, and let R be the set of all words for the identity.

1. *G* is **computably presented** if *R* is computably enumerable.

2. *G* has **solvable word problem** if *R* is computable.

Higman's Embedding Theorem

Let G be a f.g. group, and let R be the set of all words for the identity.

- 1. *G* is **computably presented** if *R* is computably enumerable.
- 2. *G* has **solvable word problem** if *R* is computable.

Note: G is computably presented if and only if G has a presentation

$$\langle S \mid r_1, r_2, r_3, \ldots \rangle$$

・ロト・西ト・ヨト・ヨト・ 日・ つくぐ

whose relations r_1, r_2, r_3, \ldots are computably enumerable.

Higman's Embedding Theorem

Let G be a f.g. group, and let R be the set of all words for the identity.

- 1. *G* is **computably presented** if *R* is computably enumerable.
- 2. *G* has **solvable word problem** if *R* is computable.

Note: G is computably presented if and only if G has a presentation

$$\langle S \mid r_1, r_2, r_3, \ldots \rangle$$

whose relations r_1, r_2, r_3, \ldots are computably enumerable.

Note 2: Any f.g. subgroup of a finitely presented group is computably presented.

Let G be a f.g. group. Then:

G is computably presented

G embeds into a finitely presented group

Graham Higman, 1960

・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

Let G be a f.g. group. Then:

G is computably presented

 \Leftrightarrow

G embeds into a finitely presented group

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Let G be a f.g. group. Then:

G is computably presented

G embeds into a finitely presented group

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

This theorem has the form

Question (Higman): Are there other theorems of this type?

Let G be a f.g. group. Then:

G is computably presented

⇔

G embeds into a finitely presented group

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

This theorem has the form

Question (Higman): Are there other theorems of this type?

For example, is there a version for groups with solvable word problem?

Observation (Kuznecov 1958, Thompson 1969)

Every finitely presented simple group has solvable word problem.

Richard J. Thompson, 2004

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

Observation (Kuznecov 1958, Thompson 1969)

Every finitely presented simple group has solvable word problem.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Observation (Kuznecov 1958, Thompson 1969)

Every finitely presented simple group has solvable word problem.

Proof.

Given a presentation $\langle s_1, \ldots s_m | r_1, \ldots r_n \rangle$ for a simple group *G* and a word *w*, we run two simultaneous searches:

Search #1 Search for a proof that

w = 1

Search #2 Search for a proof that

$$s_1 = \cdots = s_m = 1$$

using the relations r_1, \ldots, r_n . Using w = 1 and r_1, \ldots, r_n .

Eventually one of the searches terminates.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Observation (Kuznecov 1958, Thompson 1969)

Every finitely presented simple group has solvable word problem.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Observation (Kuznecov 1958, Thompson 1969)

Every finitely presented simple group has solvable word problem.

Thompson mentioned this result at a 1969 conference in Irvine, California. Higman and William Boone were both in the audience.

William and Eileen Boone, 1979

Observation (Kuznecov 1958, Thompson 1969)

Every finitely presented simple group has solvable word problem.

Thompson mentioned this result at a 1969 conference in Irvine, California. Higman and William Boone were both in the audience.

Observation (Kuznecov 1958, Thompson 1969)

Every finitely presented simple group has solvable word problem.

Thompson mentioned this result at a 1969 conference in Irvine, California. Higman and William Boone were both in the audience.

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:

G has solvable word problem

 \Leftrightarrow

G embeds into a finitely presented simple group

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Observation (Kuznecov 1958, Thompson 1969)

Every finitely presented simple group has solvable word problem.

Thompson mentioned this result at a 1969 conference in Irvine, California. Higman and William Boone were both in the audience.

Observation (Kuznecov 1958, Thompson 1969)

Every finitely presented simple group has solvable word problem.

Thompson mentioned this result at a 1969 conference in Irvine, California. Higman and William Boone were both in the audience.

Theorem (Boone–Higman 1974)

Let G be a finitely generated group. Then:

G has solvable word problem ⇔

G embeds into a simple subgroup of a finitely presented group

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Observation (Kuznecov 1958, Thompson 1969)

Every finitely presented simple group has solvable word problem.

Thompson mentioned this result at a 1969 conference in Irvine, California. Higman and William Boone were both in the audience.

Theorem (Thompson 1980)

Let G be a finitely generated group. Then:

 \Leftrightarrow

G has solvable word problem

G embeds into a f.g. simple subgroup of a finitely presented group

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Observation (Kuznecov 1958, Thompson 1969)

Every finitely presented simple group has solvable word problem.

Thompson mentioned this result at a 1969 conference in Irvine, California. Higman and William Boone were both in the audience.

Observation (Kuznecov 1958, Thompson 1969)

Every finitely presented simple group has solvable word problem.

Thompson mentioned this result at a 1969 conference in Irvine, California. Higman and William Boone were both in the audience.

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:

G has solvable word problem

 \Leftrightarrow

G embeds into a finitely presented simple group

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

The following groups embed into finitely presented simple groups:

- 1. Subgroups of V, e.g. free groups, free abelian groups, etc.
- 2. (Scott 1984) $GL_n(\mathbb{Z})$ for all $n \ge 2$.
- 3. (Röver 1999) Grigorchuk's group.
- 4. (Hsu–Wise 1999) Finitely generated right-angled Artin groups. (Haglund–Wise 2010) Finitely generated Coxeter groups.
 (Agol 2012) Cubulated hyperbolic groups.

- 5. (B–Hyde–Matucci 2023) All countable abelian groups.
- 6. (BBMZ 2023) All hyperbolic groups.(BBMZ 2023) All contracting self-similar groups.

The following groups embed into finitely presented simple groups:

- 1. Subgroups of V, e.g. free groups, free abelian groups, etc.
- 2. (Scott 1984) $GL_n(\mathbb{Z})$ for all $n \ge 2$.
- 3. (Röver 1999) Grigorchuk's group.
- 4. (Hsu–Wise 1999) Finitely generated right-angled Artin groups. (Haglund–Wise 2010) Finitely generated Coxeter groups.
 (Agol 2012) Cubulated hyperbolic groups.
- 5. (B–Hyde–Matucci 2023) All countable abelian groups.
- 6. (BBMZ 2023) All hyperbolic groups.(BBMZ 2023) All contracting self-similar groups.

The following groups embed into finitely presented simple groups:

- 1. Subgroups of V, e.g. free groups, free abelian groups, etc.
- 2. (Scott 1984) $GL_n(\mathbb{Z})$ for all $n \ge 2$.
- 3. (Röver 1999) Grigorchuk's group.
- 4. (Hsu–Wise 1999) Finitely generated right-angled Artin groups. (Haglund–Wise 2010) Finitely generated Coxeter groups.
 (Agol 2012) Cubulated hyperbolic groups.

- 5. (B-Hyde-Matucci 2023) All countable abelian groups.
- 6. (BBMZ 2023) All hyperbolic groups.(BBMZ 2023) All contracting self-similar groups.

The following groups embed into finitely presented simple groups:

- 1. Subgroups of V, e.g. free groups, free abelian groups, etc.
- 2. (Scott 1984) $GL_n(\mathbb{Z})$ for all $n \ge 2$.
- 3. (Röver 1999) Grigorchuk's group.
- 4. (Hsu–Wise 1999) Finitely generated right-angled Artin groups. (Haglund–Wise 2010) Finitely generated Coxeter groups.
 (Agol 2012) Cubulated hyperbolic groups.
- 5. (B–Hyde–Matucci 2023) All countable abelian groups.
- 6. (BBMZ 2023) All hyperbolic groups.(BBMZ 2023) All contracting self-similar groups.

The following groups embed into finitely presented simple groups:

- 1. Subgroups of V, e.g. free groups, free abelian groups, etc.
- 2. (Scott 1984) $GL_n(\mathbb{Z})$ for all $n \ge 2$.
- 3. (Röver 1999) Grigorchuk's group.
- 4. (Hsu–Wise 1999) Finitely generated right-angled Artin groups. (Haglund–Wise 2010) Finitely generated Coxeter groups.
 (Agol 2012) Cubulated hyperbolic groups.

・ロト・西ト・ヨト・ヨト・ 日・ つくぐ

- 5. (B–Hyde–Matucci 2023) All countable abelian groups.
- 6. (BBMZ 2023) All hyperbolic groups.(BBMZ 2023) All contracting self-similar groups.

The following groups embed into finitely presented simple groups:

- 1. Subgroups of V, e.g. free groups, free abelian groups, etc.
- 2. (Scott 1984) $GL_n(\mathbb{Z})$ for all $n \ge 2$.
- 3. (Röver 1999) Grigorchuk's group.
- 4. (Hsu–Wise 1999) Finitely generated right-angled Artin groups. (Haglund–Wise 2010) Finitely generated Coxeter groups.
 (Agol 2012) Cubulated hyperbolic groups.

・ロト・西ト・ヨト・ヨト・ 日・ つくぐ

- 5. (B-Hyde-Matucci 2023) All countable abelian groups.
- 6. (BBMZ 2023) All hyperbolic groups.(BBMZ 2023) All contracting self-similar groups.

The following groups embed into finitely presented simple groups:

- 1. Subgroups of V, e.g. free groups, free abelian groups, etc.
- 2. (Scott 1984) $GL_n(\mathbb{Z})$ for all $n \ge 2$.
- 3. (Röver 1999) Grigorchuk's group.
- 4. (Hsu–Wise 1999) Finitely generated right-angled Artin groups. (Haglund–Wise 2010) Finitely generated Coxeter groups.
 (Agol 2012) Cubulated hyperbolic groups.

・ロト・西ト・ヨト・ヨト・ 日・ つくぐ

- 5. (B–Hyde–Matucci 2023) All countable abelian groups.
- (BBMZ 2023) All hyperbolic groups.
 (BBMZ 2023) All contracting self-similar groups.

Open Questions

Which of the following groups embed into finitely presented simple groups?

1. Braid groups, mapping class groups, $Aut(F_n)$ and $Out(F_n)$.

- 2. (Non-solvable) Baumslag-Solitar groups BS(m, n).
- 3. One-relator groups (without torsion).
- **4**. $\operatorname{GL}_n(\mathbb{Q})$.
- 5. Finitely generated metabelian groups.
- 6. Free by cyclic groups.
- 7. CAT(0) groups.

Main Theorem (B–Bleak–Matucci–Zaremsky 2023)

Every hyperbolic group embeds into a finitely presented simple group.

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:

G has solvable word problem

 \Leftrightarrow

G embeds into a finitely presented simple group

Note: The (\Leftarrow) direction is easy, but (\Rightarrow) is open.

Main Theorem (B-Bleak-Matucci-Zaremsky 2023)

Every hyperbolic group embeds into a finitely presented simple group.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Main Theorem (B–Bleak–Matucci–Zaremsky 2023)

Every hyperbolic group embeds into a finitely presented simple group.

Sketch of Proof.

- 1. Embed every hyperbolic group into a "Thompson-like" group.
- 2. Embed these "Thompson-like" groups into finitely presented simple groups.

Main Theorem (B–Bleak–Matucci–Zaremsky 2023)

Every hyperbolic group embeds into a finitely presented simple group.

Sketch of Proof.

- 1. Embed every hyperbolic group into a "Thompson-like" group.
- Embed these "Thompson-like" groups into finitely presented simple groups.

Note: Our "Thompson-like" groups belong to a new class, which we call **rational similarity groups (RSGs)**. Specifically, they are full, contracting RSGs.
Main Theorem (B–Bleak–Matucci–Zaremsky 2023)

Every hyperbolic group embeds into a finitely presented simple group.

Sketch of Proof.

- 1. Embed every hyperbolic group into a "Thompson-like" group.
- 2. Embed these "Thompson-like" groups into finitely presented simple groups.

Main Theorem (B–Bleak–Matucci–Zaremsky 2023)

Every hyperbolic group embeds into a finitely presented simple group.

Sketch of Proof.

- 1. Embed every hyperbolic group into a "Thompson-like" group.
- 2. Embed these "Thompson-like" groups into finitely presented simple groups.

Right now, let's talk about step #2.

Boone–Higman embeddings of Thompson-like groups

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Embeddings of "Thompson-like" groups

"Thompson-like" groups aren't always simple, e.g. $V_{n,r}$ is not simple if *n* is odd.

(B–Zaremsky 2022) introduced some robust technology for embedding such groups into finitely presented simple groups.

Embeddings of "Thompson-like" groups

"Thompson-like" groups aren't always simple, e.g. $V_{n,r}$ is not simple if *n* is odd.

(B–Zaremsky 2022) introduced some robust technology for embedding such groups into finitely presented simple groups.

Theorem (Zaremsky 2022)

Let G be a group acting faithfully on a countable set X. Suppose:

- 1. G is finitely presented,
- 2. The stabilizer of any finite subset of X is finitely generated, and
- 3. *G* is oligomorphic, i.e. for each *n* there are finitely many orbits of *n*-element subsets of *X*.

Then G embeds into a finitely presented simple group.

Recall that the **Brin–Thompson group** 2V acts on the Cantor square $C \times C$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Recall that the **Brin–Thompson group** 2V acts on the Cantor square $C \times C$.

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで

Recall that the **Brin–Thompson group** 2V acts on the Cantor square $C \times C$.

Recall that the **Brin–Thompson group** 2V acts on the Cantor square $C \times C$.

Twisted 2V is similar, but rectangles are allowed to flip diagonally.

・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

Recall that the **Brin–Thompson group** 2V acts on the Cantor square $C \times C$.

Twisted 2*V* is similar, but rectangles are allowed to flip diagonally.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Recall that the **Brin–Thompson group** 2V acts on the Cantor square $C \times C$.

Twisted 2V is similar, but rectangles are allowed to flip diagonally.

More generally, nV acts on a Cantor *n*-cube C^n , and we can twist by any group of permutations of $\{1, \ldots, n\}$.

V	2 <i>V</i>	3 <i>V</i>	

・ロト・西ト・ヨト・ヨト・ 日・ つくぐ

Recall that the **Brin–Thompson group** 2V acts on the Cantor square $C \times C$.

Twisted 2V is similar, but rectangles are allowed to flip diagonally.

More generally, nV acts on a Cantor *n*-cube C^n , and we can twist by any group of permutations of $\{1, \ldots, n\}$.

・ロト・西ト・ヨト・ヨト・ 日・ つくぐ

Recall that the **Brin–Thompson group** 2V acts on the Cantor square $C \times C$.

Twisted 2V is similar, but rectangles are allowed to flip diagonally.

More generally, nV acts on a Cantor *n*-cube C^n , and we can twist by any group of permutations of $\{1, \ldots, n\}$.

You can even twist ωV by a group of permutations of an infinite set to get a **twisted** ωV .

・ロト・西ト・ヨト・ヨト・ 日・ つくぐ

Recall that the **Brin–Thompson group** 2V acts on the Cantor square $C \times C$.

Twisted 2V is similar, but rectangles are allowed to flip diagonally.

More generally, nV acts on a Cantor *n*-cube C^n , and we can twist by any group of permutations of $\{1, \ldots, n\}$.

You can even twist ωV by a group of permutations of an infinite set to get a **twisted** ωV .

If we twist ωV by *G*, then *G* embeds into the resulting twisted ωV . Under the right circumstances, this twisted ωV is finitely presented and simple.

Theorem (Zaremsky 2022)

Let G be a group acting faithfully on a countable set X. Suppose:

- 1. G is finitely presented,
- 2. The stabilizer of any finite subset of X is finitely generated, and

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

3. G is oligomorphic.

Then G embeds into a finitely presented simple group.

Theorem (Zaremsky 2022)

Let G be a group acting faithfully on a countable set X. Suppose:

- 1. G is finitely presented,
- 2. The stabilizer of any finite subset of X is finitely generated, and
- 3. G is oligomorphic.

Then G embeds into a finitely presented simple group.

Theorem (B–Bleak–Matucci–Zaremsky 2023)

Every contracting self-similar group embeds into a finitely presented simple group.

A **self-similar group** *G* (e.g. Grigorchuk's group) is a group of automorphisms of the infinite, rooted binary tree T_d that is closed under restrictions.

A **self-similar group** *G* (e.g. Grigorchuk's group) is a group of automorphisms of the infinite, rooted binary tree T_d that is closed under restrictions.

A **self-similar group** *G* (e.g. Grigorchuk's group) is a group of automorphisms of the infinite, rooted binary tree T_d that is closed under restrictions.

Such a group acts by homeomorphisms on the *d*-ary Cantor set.

A **self-similar group** *G* (e.g. Grigorchuk's group) is a group of automorphisms of the infinite, rooted binary tree T_d that is closed under restrictions.

Such a group acts by homeomorphisms on the *d*-ary Cantor set.

A **self-similar group** *G* (e.g. Grigorchuk's group) is a group of automorphisms of the infinite, rooted binary tree T_d that is closed under restrictions.

Such a group acts by homeomorphisms on the *d*-ary Cantor set.

A **Röver–Nekrashevych group** V_dG is a group generated by:

- 1. A self-similar group $G \leq Aut(\mathcal{T}_d)$, and
- 2. The Higman–Thompson group V_d .

A **self-similar group** *G* (e.g. Grigorchuk's group) is a group of automorphisms of the infinite, rooted binary tree T_d that is closed under restrictions.

Such a group acts by homeomorphisms on the *d*-ary Cantor set.

A **Röver–Nekrashevych group** V_dG is a group generated by:

- 1. A self-similar group $G \leq \operatorname{Aut}(\mathcal{T}_d)$, and
- 2. The Higman–Thompson group V_d .

Applications to embeddings (Scott 1984, Röver 1999), C^* -algebras (Nekrashevych 2004), and finiteness properties (Skipper–Witzel–Zaremsky 2019).

The elements of Grigorchuk's group can be described by finite-state automata.

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで

The elements of Grigorchuk's group can be described by finite-state automata.

A self-similar group *G* with this property is **rational**.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

The elements of Grigorchuk's group can be described by finite-state automata.

A self-similar group *G* with this property is **rational**.

G is **contracting** if it has a finite nucleus of states.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

The elements of Grigorchuk's group can be described by finite-state automata.

A self-similar group *G* with this property is **rational**.

G is **contracting** if it has a finite nucleus of states.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Theorem (Nekrashevych 2018)

If $G \leq Aut(\mathcal{T}_d)$ is a contracting self-similar group, then V_dG is finitely presented.

Theorem (Nekrashevych 2018)

If $G \leq Aut(\mathcal{T}_d)$ is a contracting self-similar group, then V_dG is finitely presented.

Theorem (Zaremsky 2022)

Let G be a group acting faithfully on a countable set X. Suppose:

- 1. G is finitely presented,
- 2. The stabilizer of any finite subset of X is finitely generated, and
- 3. G is oligomorphic.

Then G embeds into a finitely presented simple group.

Theorem (Nekrashevych 2018)

If $G \leq Aut(\mathcal{T}_d)$ is a contracting self-similar group, then V_dG is finitely presented.

◆□▶▲□▶▲≣▶▲≣▶ ▲□▶

Main Theorem (B–Bleak–Matucci–Zaremsky 2023)

Every hyperbolic group embeds into a finitely presented simple group.

Sketch of Proof.

- 1. Embed every hyperbolic group into a "Thompson-like" group.
- 2. Embed these "Thompson-like" groups into finitely presented simple groups.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Main Theorem (B–Bleak–Matucci–Zaremsky 2023)

Every hyperbolic group embeds into a finitely presented simple group.

Sketch of Proof.

- 1. Embed every hyperbolic group into a "Thompson-like" group.
- Embed these "Thompson-like" groups into finitely presented simple groups. ✓

Main Theorem (B–Bleak–Matucci–Zaremsky 2023)

Every hyperbolic group embeds into a finitely presented simple group.

Sketch of Proof.

- 1. Embed every hyperbolic group into a "Thompson-like" group.
- Embed these "Thompson-like" groups into finitely presented simple groups. ✓

For step #1, the "Thompson-like" group must satisfy the hypotheses of Zaremsky's theorem.

A Motivating Example

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Example: The Free Group

Let's embed the free group $F_2 = \langle a, b \rangle$ into a Thompson-like group.

Example: The Free Group

Let's embed the free group $F_2 = \langle a, b \rangle$ into a Thompson-like group.

The boundary ∂F_2 is a Cantor space.

・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

Example: The Free Group

Let's embed the free group $F_2 = \langle a, b \rangle$ into a Thompson-like group.

The boundary ∂F_2 is a Cantor space.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

э
Let's embed the free group $F_2 = \langle a, b \rangle$ into a Thompson-like group.

The boundary ∂F_2 is a Cantor space.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

э

Let's embed the free group $F_2 = \langle a, b \rangle$ into a Thompson-like group.

The boundary ∂F_2 is a Cantor space.

・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

 F_2 acts on ∂F_2 by homeomorphisms.

Here is a homeomorphism of ∂F_2 which is *piecewise* in F_2 :

イロト イポト イヨト イヨト

Here is a homeomorphism of ∂F_2 which is *piecewise* in F_2 :

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

-

Let $\llbracket F_2 \mid \partial F_2 \rrbracket$ be the group of all such homeomorphisms.

This is an example of a **full group**.

Full Groups

If X is a Cantor space and $G \leq \text{Homeo}(X)$, let

$\llbracket G \mid X \rrbracket$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

be the group of all piecewise-*G* homeomorphisms of *X*.

Full Groups

If X is a Cantor space and $G \leq \text{Homeo}(X)$, let

$[\![G \,|\, X]\!]$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 – のへぐ

be the group of all piecewise-*G* homeomorphisms of *X*.

 $\llbracket G \mid X \rrbracket$ is the **full closure** of *G*, and *G* is **full** if $\llbracket G \mid X \rrbracket = G$.

Full Groups

If X is a Cantor space and $G \leq \text{Homeo}(X)$, let

$\llbracket G \mid X \rrbracket$

be the group of all piecewise-G homeomorphisms of X.

 $\llbracket G \mid X \rrbracket$ is the **full closure** of *G*, and *G* is **full** if $\llbracket G \mid X \rrbracket = G$.

Examples of Full Groups

- 1. Higman–Thompson groups $V_{d,r}$.
- 2. Stein groups $V_{\{d_1,\ldots,d_n\},r}$.
- 3. Brin–Thompson groups nV.
- 4. Röver–Nekrashevych groups V_dG .

The full group $\llbracket F_2 \mid \partial F_2 \rrbracket$ contains F_2 , and is very Thompson-like.

イロト イポト イヨト イヨト

э

The full group $[[F_2 | \partial F_2]]$ contains F_2 , and is very Thompson-like.

(Matui 2015) It is finitely presented (type F_{∞}), has simple commutator subgroup, and its abelianization is \mathbb{Z}^2 .

The boundary ∂F_2 is a **subshift of finite type**.

▲□▶▲□▶▲≡▶▲≡▶ = 三 のへで

It consists of all infinite directed paths in the graph Γ above.

The boundary ∂F_2 is a subshift of finite type.

It consists of all infinite directed paths in the graph Γ above.

(Matsumoto 2015, Matui 2015) Each irreducible subshift of finite type has an associated (Thompson-like) full group V_{Γ} .

Hyperbolic Groups

▲□▶ ▲圖▶ ▲ 臣▶ ▲臣▶ 臣 - のへぐ

Hyperbolic Boundaries

The Gromov boundary ∂G of a hyperbolic group G isn't usually a Cantor space.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Hyperbolic Boundaries

The Gromov boundary ∂G of a hyperbolic group G isn't usually a Cantor space.

But the **horofunction boundary** $\partial_h G$ of *G* usually *is* a Cantor space.

Every f.g. group *G* has a **horofunction boundary** $\partial_h G$, which is compact, totally disconnected, and metrizable.

G acts on $\partial_h G$ by homeomorphisms.

Every f.g. group *G* has a **horofunction boundary** $\partial_h G$, which is compact, totally disconnected, and metrizable.

G acts on $\partial_h G$ by homeomorphisms.

Theorem (Webster–Winchester 2005)

If G is hyperbolic, then ∂G is a quotient of $\partial_h G$, and the quotient map $\partial_h G \rightarrow \partial G$ is finite-to-one.

Every f.g. group *G* has a **horofunction boundary** $\partial_h G$, which is compact, totally disconnected, and metrizable.

G acts on $\partial_h G$ by homeomorphisms.

Theorem (Webster–Winchester 2005)

If G is hyperbolic, then ∂G is a quotient of $\partial_h G$, and the quotient map $\partial_h G \rightarrow \partial G$ is finite-to-one. (See Perego 2023.)

Every f.g. group *G* has a **horofunction boundary** $\partial_h G$, which is compact, totally disconnected, and metrizable.

G acts on $\partial_h G$ by homeomorphisms.

Theorem (Webster–Winchester 2005)

If G is hyperbolic, then ∂G is a quotient of $\partial_h G$, and the quotient map $\partial_h G \rightarrow \partial G$ is finite-to-one. (See Perego 2023.)

Every f.g. group *G* has a **horofunction boundary** $\partial_h G$, which is compact, totally disconnected, and metrizable.

G acts on $\partial_h G$ by homeomorphisms.

Theorem (Webster–Winchester 2005)

If G is hyperbolic, then ∂G is a quotient of $\partial_h G$, and the quotient map $\partial_h G \rightarrow \partial G$ is finite-to-one. (See Perego 2023.)

Some Technical Problems

- 1. *G* might not act faithfully on $\partial_h G$.
- 2. $\partial_h G$ might not be a Cantor space.

Every f.g. group *G* has a **horofunction boundary** $\partial_h G$, which is compact, totally disconnected, and metrizable.

G acts on $\partial_h G$ by homeomorphisms.

Theorem (Webster–Winchester 2005)

If G is hyperbolic, then ∂G is a quotient of $\partial_h G$, and the quotient map $\partial_h G \rightarrow \partial G$ is finite-to-one. (See Perego 2023.)

ション 小田 マイビット ビックタン

Some Technical Problems

- 1. *G* might not act faithfully on $\partial_h G$.
- 2. $\partial_h G$ might not be a Cantor space.

Both can be solved by first embedding *G* in $G * \mathbb{Z}$.

Every f.g. group *G* has a **horofunction boundary** $\partial_h G$, which is compact, totally disconnected, and metrizable.

G acts on $\partial_h G$ by homeomorphisms.

Theorem (Webster–Winchester 2005)

If G is hyperbolic, then ∂G is a quotient of $\partial_h G$, and the quotient map $\partial_h G \rightarrow \partial G$ is finite-to-one. (See Perego 2023.)

Every f.g. group *G* has a **horofunction boundary** $\partial_h G$, which is compact, totally disconnected, and metrizable.

G acts on $\partial_h G$ by homeomorphisms.

Theorem (Webster–Winchester 2005)

If G is hyperbolic, then ∂G is a quotient of $\partial_h G$, and the quotient map $\partial_h G \rightarrow \partial G$ is finite-to-one. (See Perego 2023.)

Assuming $\partial_h G$ is well-behaved (i.e. a Cantor space on which *G* acts faithfully), we get an embedding of *G* in the "Thompson-like" group $[[G \mid \partial_h G]]$.

The horofunction boundary $\partial_h G$ can be defined as follows.

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで

The horofunction boundary $\partial_h G$ can be defined as follows.

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで

The horofunction boundary $\partial_h G$ can be defined as follows.

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで

The horofunction boundary $\partial_h G$ can be defined as follows.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

The horofunction boundary $\partial_h G$ can be defined as follows.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

The horofunction boundary $\partial_h G$ can be defined as follows.

・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

(B–Bleak–Matucci 2021)

This defines the **tree of atoms**. Its space of ends is $\partial_h G$.

Theorem (B-Bleak-Matucci 2021)

For a hyperbolic group G, the tree of atoms is a self-similar tree.

▲□▶▲□▶▲□▶▲□▶ □ のQの

Theorem (B-Bleak-Matucci 2021)

For a hyperbolic group G, the tree of atoms is a self-similar tree.

This identifies $\partial_h G$ with a clopen set in some subshift of finite type.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (B-Bleak-Matucci 2021)

For a hyperbolic group G, the tree of atoms is a self-similar tree.

This identifies $\partial_h G$ with a clopen set in some subshift of finite type.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○ ○

Theorem (B-Bleak-Matucci 2021)

For a hyperbolic group G, the tree of atoms is a self-similar tree.

This identifies $\partial_h G$ with a clopen set in some subshift of finite type.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Atoms in hyperbolic groups

Theorem (B-Bleak-Matucci 2021)

For a hyperbolic group G, the tree of atoms is a self-similar tree.

This identifies $\partial_h G$ with a clopen set in some subshift of finite type.

But what does the action of *G* on this clopen set look like?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Atoms in hyperbolic groups

Theorem (B-Bleak-Matucci 2021)

For a hyperbolic group G, the tree of atoms is a self-similar tree.

This identifies $\partial_h G$ with a clopen set in some subshift of finite type.

But what does the action of *G* on this clopen set look like?

Answer: Finite-state automata.

(Grigorchuk, Nekrashevych, Sushchanskii 2000)

Elements of V_d can be described by **asynchronous automata**.

(Grigorchuk, Nekrashevych, Sushchanskii 2000)

Elements of V_d can be described by **asynchronous automata**.

If *G* is a rational self-similar group, then elements of V_dG can also be described by asynchronous automata.

Theorem (B-Bleak-Matucci 2021)

If G is a hyperbolic group, then G acts by asynchronous automata (w.r.t. the subshift) on $\partial_h G$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○ ○

Theorem (B-Bleak-Matucci 2021)

If G is a hyperbolic group, then G acts by asynchronous automata (w.r.t. the subshift) on $\partial_h G$.

Indeed, the full group $[[G | \partial_h G]]$ acts by asynchronous automata and contains V_{Γ} . We call a group with these properties a **full rational similarity group (full RSG)**.

Theorem (B–Bleak–Matucci 2021)

If G is a hyperbolic group, then G acts by asynchronous automata (w.r.t. the subshift) on $\partial_h G$.

Indeed, the full group $[[G | \partial_h G]]$ acts by asynchronous automata and contains V_{Γ} . We call a group with these properties a **full rational similarity group (full RSG)**.

So the class of full RSG's includes:

- 1. Röver–Nekrashevych groups V_dG , where *G* is any rational self-similar group.
- 2. $[[G \mid \partial_h G]]$ for any well-behaved hyperbolic group *G*.

A full RSG is **contracting** if it has a finite nucleus of states.

A full RSG is **contracting** if it has a finite nucleus of states.

Theorem (B–Bleak–Matucci–Zaremsky 2023) If G is hyperbolic group with well-behaved $\partial_h G$, then $[[G | \partial_h G]]$ is a full, contracting RSG.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

A full RSG is **contracting** if it has a finite nucleus of states.

Theorem (B–Bleak–Matucci–Zaremsky 2023) If *G* is hyperbolic group with well-behaved $\partial_h G$, then $[[G | \partial_h G]]$ is a full, contracting RSG.

Theorem (B–Bleak–Matucci–Zaremsky 2023) Every full, contracting RSG is finitely presented.

A full RSG is **contracting** if it has a finite nucleus of states.

Theorem (B–Bleak–Matucci–Zaremsky 2023) If G is hyperbolic group with well-behaved $\partial_h G$, then $[[G | \partial_h G]]$ is a full, contracting RSG.

Theorem (B–Bleak–Matucci–Zaremsky 2023) Every full, contracting RSG is finitely presented.

Theorem (B–Bleak–Matucci–Zaremsky 2023)

Every full, contracting RSG embeds into a finitely presented simple group.

Questions

For which hyperbolic groups *G* is $\partial_h G$ well-behaved?

- ▶ Is $\partial_h G$ always well-behaved if G acts faithfully on ∂G ?
- If G is non-elementary, is ∂_hG always well-behaved with respect to some generating set?

What can be said about the finiteness properties of $[[G \mid \partial_h G]]$?

Are there non-hyperbolic groups *G* for which $\llbracket G \mid \partial_h G \rrbracket$ finitely presented? Can we get any more Boone–Higman embeddings this way?

- If $G = \mathbb{Z}^2$, then $\llbracket G \mid \partial_h G \rrbracket \cong H_2 \times H_2 \times H_2 \times H_2$.
- If we want [[G | ∂_hG]] to be contracting, the groups of germs must be virtually cyclic.