
Hyperbolic Groups Satisfy
the Boone–Higman Conjecture

−→

Jim Belk, University of Glasgow



Collaborators

Collin Bleak
U. of St Andrews

Francesco Matucci
U. of Milano–Bicocca

Matthew Zaremsky
SUNY at Albany



Main Theorem

Main Theorem (B–Bleak–Matucci–Zaremsky 2023)
Every hyperbolic group embeds into a finitely presented simple
group.



Main Theorem

Main Theorem (B–Bleak–Matucci–Zaremsky 2023)
Every hyperbolic group embeds into a finitely presented simple
group.

The Boone–Higman Conjecture (1973)
Let G be a finitely generated group. Then:
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Let G be a f.g. group, and let R be the set of all words for the
identity.

1. G is computably presented if R is computably enumerable.

2. G has solvable word problem if R is computable.

Note: G is computably presented if and only if G has a presentation

⟨S | r1 , r2 , r3 , . . .⟩

whose relations r1 , r2 , r3 , . . . are computably enumerable.

Note 2: Any f.g. subgroup of a finitely presented group is
computably presented.
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G is
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⇔ G embeds into
a finitely presented group

This theorem has the form

G has a certain
algorithmic property

⇔ G embeds into
a certain kind of group

Question (Higman): Are there other theorems of this type?

For example, is there a version for groups with solvable word
problem?
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An Observation

Observation (Kuznecov 1958, Thompson 1969)
Every finitely presented simple group has solvable word problem.

Proof.
Given a presentation ⟨s1 , . . . sm | r1 , . . . rn⟩ for a simple group G
and a word w, we run two simultaneous searches:

Search #1
Search for a proof that

w = 1

using the relations r1 , . . . , rn.

Search #2
Search for a proof that

s1 = · · · = sm = 1

using w = 1 and r1 , . . . , rn.

Eventually one of the searches terminates. □
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Thompson mentioned this result at a 1969 conference in Irvine,
California. Higman and William Boone were both in the audience.

William and
Eileen Boone, 1979
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Open Questions

Which of the following groups embed into finitely presented simple
groups?

1. Braid groups, mapping class groups, Aut(Fn) and Out(Fn).

2. (Non-solvable) Baumslag-Solitar groups BS(m, n).

3. One-relator groups (without torsion).

4. GLn(Q).

5. Finitely generated metabelian groups.

6. Free by cyclic groups.

7. CAT(0) groups.
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Main Theorem

Main Theorem (B–Bleak–Matucci–Zaremsky 2023)
Every hyperbolic group embeds into a finitely presented simple
group.

Sketch of Proof.

1. Embed every hyperbolic group into a “Thompson-like” group.

2. Embed these “Thompson-like” groups into finitely presented
simple groups. □

Right now, let’s talk about step #2.



Boone–Higman embeddings
of Thompson-like groups
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“Thompson-like” groups aren’t always simple, e.g. Vn,r is not simple
if n is odd.

(B–Zaremsky 2022) introduced some robust technology for
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Embeddings of “Thompson-like” groups

“Thompson-like” groups aren’t always simple, e.g. Vn,r is not simple
if n is odd.

(B–Zaremsky 2022) introduced some robust technology for
embedding such groups into finitely presented simple groups.

Theorem (Zaremsky 2022)
Let G be a group acting faithfully on a countable set X. Suppose:

1. G is finitely presented,

2. The stabilizer of any finite subset of X is finitely generated, and

3. G is oligomorphic, i.e. for each n there are finitely many orbits
of n-element subsets of X.

Then G embeds into a finitely presented simple group.
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How is this accomplished?

Recall that the Brin–Thompson group 2V acts on the Cantor
square C × C.

Twisted 2V is similar, but rectangles are allowed to flip diagonally.

More generally, nV acts on a Cantor n-cube Cn, and we can twist
by any group of permutations of {1, . . . , n}.

You can even twist 𝜔V by a group of permutations of an infinite set
to get a twisted 𝝎V .

If we twist 𝜔V by G, then G embeds into the resulting twisted 𝜔V .
Under the right circumstances, this twisted 𝜔V is finitely presented
and simple.



Application to self-similar groups

Theorem (Zaremsky 2022)
Let G be a group acting faithfully on a countable set X. Suppose:

1. G is finitely presented,

2. The stabilizer of any finite subset of X is finitely generated, and

3. G is oligomorphic.
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Theorem (Zaremsky 2022)
Let G be a group acting faithfully on a countable set X. Suppose:

1. G is finitely presented,

2. The stabilizer of any finite subset of X is finitely generated, and

3. G is oligomorphic.
Then G embeds into a finitely presented simple group.

Theorem (B–Bleak–Matucci–Zaremsky 2023)
Every contracting self-similar group embeds into a finitely presented
simple group.
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Application to self-similar groups

A self-similar group G (e.g. Grigorchuk’s group) is a group of
automorphisms of the infinite, rooted binary tree Td that is closed
under restrictions.

Such a group acts by homeomorphisms on the d-ary Cantor set.

A Röver–Nekrashevych group VdG is a group generated by:

1. A self-similar group G ≤ Aut(Td), and

2. The Higman–Thompson group Vd .

Applications to embeddings (Scott 1984, Röver 1999),
C∗-algebras (Nekrashevych 2004), and finiteness properties
(Skipper–Witzel–Zaremsky 2019).
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Theorem (Zaremsky 2022)
Let G be a group acting faithfully on a countable set X. Suppose:

1. G is finitely presented,

2. The stabilizer of any finite subset of X is finitely generated, and

3. G is oligomorphic.
Then G embeds into a finitely presented simple group.
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Main Theorem

Main Theorem (B–Bleak–Matucci–Zaremsky 2023)
Every hyperbolic group embeds into a finitely presented simple
group.

Sketch of Proof.

1. Embed every hyperbolic group into a “Thompson-like” group.

2. Embed these “Thompson-like” groups into finitely presented

simple groups. ✓ □

For step #1, the “Thompson-like” group must satisfy the hypotheses
of Zaremsky’s theorem.
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Here is a homeomorphism of 𝜕F2 which is piecewise in F2:

−→

Let [[F2 | 𝜕F2]] be the group of all such homeomorphisms.

This is an example of a full group.
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Full Groups

If X is a Cantor space and G ≤ Homeo(X), let

[[G | X]]

be the group of all piecewise-G homeomorphisms of X .

[[G | X]] is the full closure of G, and G is full if [[G | X]] = G.

Examples of Full Groups
1. Higman–Thompson groups Vd ,r .
2. Stein groups V{d1 ,...,dn},r .
3. Brin–Thompson groups nV .
4. Röver–Nekrashevych groups VdG.
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Example: The Free Group

The full group [[F2 | 𝜕F2]] contains F2, and is very Thompson-like.

−→

(Matui 2015) It is finitely presented (type F∞), has simple
commutator subgroup, and its abelianization is Z2.
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Example: The Free Group

The boundary 𝜕F2 is a subshift of finite type.

a

b

a-1

b-1

It consists of all infinite directed paths in the graph � above.

(Matsumoto 2015, Matui 2015) Each irreducible subshift of finite
type has an associated (Thompson-like) full group V�.
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The horofunction boundary

Every f.g. group G has a horofunction boundary 𝜕hG, which is
compact, totally disconnected, and metrizable.

G acts on 𝜕hG by homeomorphisms.
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The horofunction boundary

Every f.g. group G has a horofunction boundary 𝜕hG, which is
compact, totally disconnected, and metrizable.

G acts on 𝜕hG by homeomorphisms.

Theorem (Webster–Winchester 2005)
If G is hyperbolic, then 𝜕G is a quotient of 𝜕hG, and the quotient
map 𝜕hG → 𝜕G is finite-to-one. (See Perego 2023.)

Assuming 𝜕hG is well-behaved (i.e. a Cantor space on which G acts
faithfully), we get an embedding of G in the “Thompson-like” group
[[G | 𝜕hG]].



Defining 𝜕hG using atoms

The horofunction boundary 𝜕hG can be defined as follows.



Defining 𝜕hG using atoms

The horofunction boundary 𝜕hG can be defined as follows.

Bn



Defining 𝜕hG using atoms

The horofunction boundary 𝜕hG can be defined as follows.

Bn

p



Defining 𝜕hG using atoms

The horofunction boundary 𝜕hG can be defined as follows.

Bn

p



Defining 𝜕hG using atoms

The horofunction boundary 𝜕hG can be defined as follows.

Bn

p



Defining 𝜕hG using atoms

The horofunction boundary 𝜕hG can be defined as follows.

BnThese are the atoms.



Defining 𝜕hG using atoms

The horofunction boundary 𝜕hG can be defined as follows.

BnThese are the atoms.

Bn+1



Defining 𝜕hG using atoms

The horofunction boundary 𝜕hG can be defined as follows.

BnThese are the atoms.

Bn+1



Defining 𝜕hG using atoms

The horofunction boundary 𝜕hG can be defined as follows.



Defining 𝜕hG using atoms

The horofunction boundary 𝜕hG can be defined as follows.

...
...

...

(B–Bleak–Matucci 2021)
This defines the tree of atoms. Its space of ends is 𝜕hG.
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(Grigorchuk, Nekrashevych, Sushchanskĭı 2000)
Elements of Vd can be described by asynchronous automata.
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If G is a rational self-similar group, then elements of VdG can also
be described by asynchronous automata.
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Asynchronous automata

Theorem (B–Bleak–Matucci 2021)
If G is a hyperbolic group, then G acts by asynchronous automata
(w.r.t. the subshift) on 𝜕hG.

Indeed, the full group [[G | 𝜕hG]] acts by asynchronous automata
and contains V�. We call a group with these properties a full
rational similarity group (full RSG).

So the class of full RSG’s includes:
1. Röver–Nekrashevych groups VdG, where G is any rational

self-similar group.

2. [[G | 𝜕hG]] for any well-behaved hyperbolic group G.
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Full, contracting RSG’s

A full RSG is contracting if it has a finite nucleus of states.

Theorem (B–Bleak–Matucci–Zaremsky 2023)
If G is hyperbolic group with well-behaved 𝜕hG, then [[G | 𝜕hG]] is a
full, contracting RSG.

Theorem (B–Bleak–Matucci–Zaremsky 2023)
Every full, contracting RSG is finitely presented.

Theorem (B–Bleak–Matucci–Zaremsky 2023)
Every full, contracting RSG embeds into a finitely presented simple
group.



Questions

For which hyperbolic groups G is 𝜕hG well-behaved?
▶ Is 𝜕hG always well-behaved if G acts faithfully on 𝜕G?

▶ If G is non-elementary, is 𝜕hG always well-behaved with
respect to some generating set?

What can be said about the finiteness properties of [[G | 𝜕hG]]?

Are there non-hyperbolic groups G for which [[G | 𝜕hG]] finitely
presented? Can we get any more Boone–Higman embeddings this
way?
▶ If G = Z2, then [[G | 𝜕hG]] � H2 × H2 × H2 × H2.

▶ If we want [[G | 𝜕hG]] to be contracting, the groups of germs
must be virtually cyclic.
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