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The Boone–Higman Conjecture (1973)
Let G be a finitely generated group. Then:

G has solvable
word problem

⇔ G embeds into a finitely
presented simple group

Here a group has solvable word problem if there exists an
algorithm to determine whether a given word in the generators
represents the identity.

Theorem (Novikov 1955, Boone 1958)
There exist finitely presented groups with unsolvable word problem.
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The Boone–Higman Conjecture

The Boone–Higman Conjecture (1973)
Let G be a finitely generated group. Then:

G has solvable
word problem

⇔ G embeds into a finitely
presented simple group

This conjecture remains open after nearly 50 years.

Recent progress: Many groups of interest embed into finitely
presented simple groups.
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Higman’s Embedding Theorem

A countable group presentation

⟨s1 , s2 , s3 , . . . | r1 , r2 , r3 , . . .⟩

is computable if there exists an algorithm that outputs the list of
relations.

A group is computably presented if it admits such a presentation.

Examples
1. Any finitely presented group.

2. Any finitely generated subgroup of a finitely presented group.
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Let G be a finitely generated group. Then:

G is
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⇔ G embeds into
a finitely presented group

Graham Higman, 1960
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Higman’s Embedding Theorem (1961)
Let G be a finitely generated group. Then:

G is
computably presented

⇔ G embeds into
a finitely presented group

Corollaries
The following groups embed into finitely presented groups:

1. Countably generated groups with a computable presentations.

Follows from Higman–Neumann–Neumann 1949.
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Corollaries
The following groups embed into finitely presented groups:

1. Countably generated groups with a computable presentations.

2. Countable abelian groups.

Since every such group embeds in
⊕
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⊕

𝜔Q/Z.



Higman’s Embedding Theorem (1961)
Let G be a finitely generated group. Then:

G is
computably presented

⇔ G embeds into
a finitely presented group

Corollaries
The following groups embed into finitely presented groups:

1. Countably generated groups with a computable presentations.

2. Countable abelian groups.



Higman’s Embedding Theorem (1961)
Let G be a finitely generated group. Then:

G is
computably presented

⇔ G embeds into
a finitely presented group

Corollaries
The following groups embed into finitely presented groups:

1. Countably generated groups with a computable presentations.

2. Countable abelian groups.

Problem (Higman): Find an explicit and natural example of a
finitely presented group that contains Q.
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Higman’s Embedding Theorem (1961)
Let G be a finitely generated group. Then:

G is
computably presented

⇔ G embeds into
a finitely presented group

This theorem has the form

G has a certain
algorithmic property

⇔ G embeds into
a certain kind of group

Question (Higman): Are there other theorems of this type?
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Richard J. Thompson, 2004
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An Observation

Observation (Kuznecov 1958, Thompson 1969)
Every finitely presented simple group has solvable word problem.

Thompson mentioned this result at a 1969 conference in Irvine,
California. Higman and William Boone were both in the audience.

William and
Eileen Boone, 1979
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An Observation

Observation (Kuznecov 1958, Thompson 1969)
Every finitely presented simple group has solvable word problem.

Proof.
Given a presentation ⟨s1 , . . . sm | r1 , . . . rn⟩ for a simple group G
and a word w, we run two simultaneous searches:

Search #1
Search for a proof that

w = 1

using the relations r1 , . . . , rn.

Search #2
Search for a proof that

s1 = · · · = sm = 1

using w = 1 and r1 , . . . , rn.

Eventually one of the searches terminates. □
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The Conjecture

The Boone–Higman Conjecture (1973)
Let G be a finitely generated group. Then:

G has solvable
word problem

⇔ G embeds into a finitely
presented simple group

Note: By a result of Clapham (1965), it would suffice to prove the
conjecture for finitely presented groups.
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The Conjecture

The Boone–Higman Conjecture (1973)
Let G be a finitely generated group. Then:

G has solvable
word problem

⇔ G embeds into a finitely
presented simple group

As a corollary, the following groups would also embed into finitely
presented simple groups:

1. Any computably presented group with solvable word problem.

2. Any countable abelian group.
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Theorem (Boone–Higman 1974)
Every finitely generated group G with solvable word problem
embeds into a computably presented simple group.

Sketch of Proof. We want a simple group that contains G.

Simple = The normal closure of any non-identity element is the
whole group.

Trick: Given words u, v ≠G 1, consider the group

G′ =
〈
G, x , t

�� (uux)t = uxv
〉
.

G′ is an HNN extension of G ∗ ⟨x⟩, so G embeds into G′.

But now v lies in the normal closure of u.
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Theorem (Boone–Higman 1974)
Every finitely generated group G with solvable word problem
embeds into a computably presented simple group.

Sketch of Proof. Let

𝜎(G) =
〈
G, x , t1 , t2 , . . .

�� (uiux
i )ti = ux

i vi
〉

where (ui , vi) is an enumeration of all pairs of non-identity words
in G.

Then G embeds into 𝜎(G), and the normal closure of any
non-identity element of G contains G.

The desired simple group is the union of the sequence

G ≤ 𝜎(G) ≤ 𝜎2(G) ≤ 𝜎3(G) ≤ · · · . □
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Theorem (Thompson 1980)
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⇔ G embeds into a finitely generated,
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The Conjecture

The Boone–Higman Conjecture (1973)
Let G be a finitely generated group. Then:

G has solvable
word problem

⇔ G embeds into a finitely
presented simple group

Theorem (Sacerdote 1977)
There are analogues of Boone and Higman’s theorem for the order,
conjugacy, power, and subgroup membership problems.
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Definition of V

The Cantor set C is the infinite product space {0, 1}𝜔.

A dyadic subdivision of C is any subdivision obtained by
repeatedly cutting pieces in half.

000 001 01 100 101 11



Definition of V

Thompson’s group V is the group of all homeomorphisms that
map “linearly” between the pieces of two dyadic subdivisions.

0𝜔 100𝜔 101𝜔 11𝜔

00𝜔 01𝜔 10𝜔 11𝜔

This group V is finitely presented and simple.
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Thompson’s Groups

V acts by homeomorphisms on the Cantor set.

F and T are subgroups of V .

F is the subgroup of V that
preserves the linear order.
finitely presented

T is the subgroup of V that
preserves the circular order.
finitely presented, simple



Thompson’s Group T

For example, here is an element of Thompson’s group T .

F

AB

C

D
E

−→
F

A
B

C

D E



Thompson’s Groups

F acts on the interval.
finitely presented

T acts on the circle.
finitely presented, simple

V acts on the Cantor set.
finitely presented, simple



Subgroups of V

The following groups embed into V :

1. All finite groups, free groups, and free abelian groups.

2. (Higman 1974) Countable locally finite groups.

3. (Higman 1974, Brown 1987) Generalized Thompson groups
Fn, Tn, and Vn.

4. (Röver 1999) Free products of finitely many finite groups.

5. (Guba–Sapir 1999, Bleak 2008) Many solvable groups.

6. (Bleak–Kassabov–Matucci 2011) Q/Z.
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Grigorchuk (1979) defined a certain finitely generated group
G ≤ Aut(T2).

Rostislav Grigorchuk
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Grigorchuk’s Group

Grigorchuk (1979) defined a certain finitely generated group
G ≤ Aut(T2).

The boundary 𝜕T2 is the Cantor set {0, 1}𝜔. G acts by
homeomorphisms on this Cantor set.

Properties of G (Grigorchuk 1979 and 1984)

▶ G is a solution to the Burnside problem: it is infinite and finitely
generated, and every element has finite order.

▶ G has intermediate growth: the number of elements of length
less than n grows like exp

(
n0.7675) (Erschler–Zheng 2020).



Grigorchuk’s Group

The action of G on binary sequences in {0, 1}𝜔 can be described
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= 1 1 0 0 · id(0 1 1 0 1 · · · )
= 1 1 0 0 0 1 1 0 1 · · ·
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Grigorchuk’s Group

The action of G on binary sequences in {0, 1}𝜔 can be described
by automata.

id

c(1 1 0 1 0 1 1 0 1 · · · )
= 1 · d(1 0 1 0 1 1 0 1 · · · )
= 1 1 · b(0 1 0 1 1 0 1 · · · )
= 1 1 0 · a(1 0 1 1 0 1 · · · )
= 1 1 0 0 · id(0 1 1 0 1 · · · )
= 1 1 0 0 0 1 1 0 1 · · ·

Every element of G has such an automaton.
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Grigorchuk’s Group

Does G embed into Thompson’s group V?

Theorem (Röver 1999)
No. If H ≤ V is finitely generated and every element of H has finite
order, then H is finite.

Does G embed into a finitely presented simple group?

Theorem (Röver 1999)
Yes. The group VG generated by V and G is finitely presented and
simple!
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of contracting self-similar groups G ≤ Aut(Td).

Volodymyr Nekrashevych
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Nekrashevych Groups

Nekrashevych (2005) generalized Grigorchuk’s group to the family
of contracting self-similar groups G ≤ Aut(Td).

Each such G has an associated Nekrashevych group VdG.

Theorem (Nekrashevych 2013)
Every Nekrashevych group VdG is finitely presented.

Nekrashevych also gave necessary and sufficient conditions for
VdG to be simple.

This gives Boone–Higman embeddings for some contracting
self-similar groups.
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Brin’s Groups

Elements of 2V map “linearly” between two subdivisions.

−→

Theorem (Brin 2004)
The group 2V is finitely presented and simple.
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Brin’s Groups

Brin defined a family of groups nV (n ≥ 1) similarly, with 1V = V .

V 2V 3V

· · ·

Theorem (Brin 2009)
The group nV is finitely presented and simple for all n ≥ 1.



Brin’s Groups

These groups have very interesting algorithmic properties.

Theorem (B–Bleak 2014)
The order problem in nV is unsolvable for n ≥ 2

Theorem (B–Bleak–Matucci 2016)
The subgroup membership problem in nV is unsolvable for n ≥ 2.

Theorem (Salo 2020)
The conjugacy problem in nV is unsolvable for n ≥ 2.
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Right-angled Artin groups

Given a finite graph �

the corresponding right-angled Artin group (RAAG) has one
generator for each vertex, with edges corresponding to generators
that commute:〈

a, b, c, d , e
�� ac = ca, bc = cb, cd = dc, de = ed

〉
.



Embeddings into RAAG’s

Many groups either embed or virtually embed into a RAAG:

1. (Wise 2009) All limit groups.

2. (Haglund–Wise 2010) All finitely generated Coxeter groups.

3. (Agol 2012) All cubulated hyperbolic groups.

4. (Agol 2012) Fundamental groups of finite-volume hyperbolic
3-manifolds.

5. (Przytycki–Wise 2012) Fundamental groups of compact
Riemannian 3-manifolds of non-positive curvature.
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If a group G virtually embeds into a RAAG, then G embeds into one
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Theorem (B–Bleak–Matucci 2016)
If a group G virtually embeds into a RAAG, then G embeds into one
of Brin’s groups nV.

Salo (2021) has shown that all RAAG’s embed into 2V .

−→
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Problem (Higman): Find an explicit and natural example of a
finitely presented group that contains Q.

In 1999, Martin Bridson and Pierre de la Harpe submitted this
question to the Kourovka notebook as a “well-known” problem.

Bridson also mentioned this problem in his article on Geometric and
Combinatorial Group Theory in the Princeton Companion to
Mathematics (2008).

In 2020, James Hyde, Francesco Matucci, and I noticed an
elementary solution.



Countable Abelian Groups

Recall that Thompson’s group T acts on S1.

A lift of an element g ∈ T is a homeomorphism g : R→ R that
makes the following diagram commute:

R
g
//

��

R

��

S1
g
// S1

Note: If g is a lift of g then so is g + n for any n ∈ Z.

Let T be the group of all lifts of elements of T .



Countable Abelian Groups

For example, here’s an element of T :

AB

C

−→

A

B

C

and here’s one possible lift in T :

A A

A A

B B

B B

C C

C C



Countable Abelian Groups

Theorem (B–Hyde–Matucci 2020)
The group T is finitely presented and contains Q.

T =
〈
a, b

�� a4b−3 , (ba)5b−9 , [bab, a2baba2],
[bab, a2b2a2baba2ba2]

〉
Note: We did not introduce this group T . It had previously
appeared in the work of Ghys and Sergiescu (1987).
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Theorem (B–Hyde–Matucci 2020)
The group T is finitely presented and contains Q.

Proof. Start with the element f1(t) = t + 1:

It’s easy to find a square root f2 of f1:
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Theorem (B–Hyde–Matucci 2020)
The group T is finitely presented and contains Q.

Proof. Now construct a cube root f3 of f2:

Next, construct a fourth root f4 of f3:

Then ⟨f1 , f2 , f3 , f4 , . . .⟩ � Q. □
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Theorem (B–Hyde–Matucci 2022)
Every countable abelian group embeds into a finitely presented
simple group.
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Sketch of Proof. Conjugating T by a homeomorphism R→ (0, 1)
gives an action of T on [0, 1]
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Theorem (B–Hyde–Matucci 2022)
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Countable Abelian Groups

Theorem (B–Hyde–Matucci 2022)
Every countable abelian group embeds into a finitely presented
simple group.

Sketch of Proof. Conjugating T by a homeomorphism R→ (0, 1)
gives an action of T on [0, 1]

Cutting along the dyadics gives an action of T on the Cantor set.

We prove that the group VT generated by V and T is finitely
presented, simple, and contains

⊕
𝜔Q ⊕

⊕
𝜔Q/Z. □
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Twisting Brin’s Groups

In 2020, Matthew Zaremsky and I considered a “twisted” version of
Brin’s group 2V .

In general, you can twist nV by any group of permutations
of {1, . . . , n}.

You can even twist 𝜔V by a finitely generated group G of
permutations of an infinite set X .

Theorem (B–Zaremsky 2020)
Any twisted 𝜔V is simple, and is finitely generated as long as the
action of G on X is transitive.

Corollary (B–Zaremsky 2020)
Any finitely generated group G embeds isometrically into a finitely
generated simple group.



Twisting Brin’s Groups

We can also get finitely presented simple groups.

Theorem (B–Zaremsky 2020, Zaremsky 2022)
Suppose:

1. G is finitely presented,
2. G acts highly transitively on a set X, and
3. Stabilizers of finite subsets of X are finitely generated.

Then the resulting twisted 𝜔V is a finitely presented simple group
that contains G.



Twisting Brin’s Groups

Corollary
Every contracting self-similar embeds into a finitely presented
simple group.

id

Sketch of Proof.
The Nekrashevych group
VdG is finitely presented,
highly transitive on any orbit,
and has finitely generated
stabilizers, so the resulting
twisted 𝜔V is finitely
presented and simple.

We can similarly handle many other “Thompson-like” groups.
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Corollary
Every contracting self-similar embeds into a finitely presented
simple group.

id

Sketch of Proof.
The Nekrashevych group
VdG is finitely presented,
highly transitive on any orbit,
and has finitely generated
stabilizers, so the resulting
twisted 𝜔V is finitely
presented and simple.

We can similarly handle many other “Thompson-like” groups.
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Hyperbolic Groups

Gromov (1987) defined a finitely generated group to be hyperbolic
if its Cayley graph satisfies the 𝛿-thin triangles condition.

For example, the fundamental group of any compact hyperbolic
manifold is a hyperbolic group.

In a certain precise sense, almost every finitely presented group is
hyperbolic (Ol’Shanskii 1991).
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Hyperbolic Groups

Theorem (B–Bleak–Matucci–Zaremsky 2022)
Every hyperbolic group G embeds into a finitely presented simple
group.

Ingredients in the Proof:

1. G has a horofunction boundary 𝜕hG, which is compact and
totally disconnected.

2. Consider the group V[G] of all homeomorphisms of 𝜕hG that
piecewise agree with elements of G.

3. Prove that V[G] is finitely presented, highly transitive on some
orbit, and has finitely generated stabilizers.

4. Conclude that V[G] embeds into a twisted 𝜔V which is finitely
presented and simple.
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Hyperbolic Groups

The horofunction boundary 𝜕hG is defined as follows.

...
...

...

This is the tree of atoms. Its space of ends is 𝜕hG.
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1. The tree of atoms has a self-similar structure, and

2. G acts on 𝜕hG by asynchronous automata.
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Hyperbolic Groups

Theorem (B–Bleak–Matucci 2018)
If G is a hyperbolic group, then:

1. The tree of atoms has a self-similar structure, and

2. G acts on 𝜕hG by asynchronous automata.

Theorem (B–Bleak–Matucci–Zaremsky 2022)
The action of G on 𝜕hG is contracting, and hence V[G] is finitely
presented.



Open Questions

Which of the following groups embed into finitely presented simple
groups?

1. Braid groups Bn for n ≥ 4?

2. Mapping class groups?

3. Out(Fn)?

4. Finitely generated nilpotent groups?

5. Finitely generated metabelian groups?

6. One relator groups?

Also, what is an explicit, natural example of a finitely presented
group that contains GLn(Q)?



The End
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embed into finitely presented simple groups?

Thurston showed that Mod(S) acts on the boundary of Teich(S) by
piecewise integral projective (PIP) transformations.

He also observed that the group of all PIP homeomorphisms of a
circle is isomorphic to Thompson’s group T .
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C

D
E

−→
F

A
B

C

D E
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Mapping Class Groups

Open Question: Do mapping class groups and braid groups
embed into finitely presented simple groups?

Thurston showed that Mod(S) acts on the boundary of Teich(S) by
piecewise integral projective (PIP) transformations.

He also observed that the group of all PIP homeomorphisms of a
circle is isomorphic to Thompson’s group T .

Open Question (Thurston): For n ≥ 2, is the group of all PIP
homeomorphisms of Sn finitely generated?

If PIP(Sn) is finitely presented and simple, this would give
Boone–Higman embeddings for all mapping class groups.
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