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The Boone–Higman Conjecture (1973)
Let G be a finitely generated group. Then:

G has solvable
word problem

⇔ G embeds into a finitely
presented simple group

Note: By Clapham (1965), it suffices to prove the conjecture in the
case where G is finitely presented.

Recent progress: Many groups of interest embed into finitely
presented simple groups.
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Higman’s Embedding Theorem

A countable group presentation

⟨s1 , s2 , s3 , . . . | r1 , r2 , r3 , . . .⟩

is computable if there exists an algorithm that outputs the list of
relations.

A group is computably presented if it admits such a presentation.

Examples
1. Any finitely presented group.

2. Any finitely generated subgroup of a finitely presented group.
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Higman’s Embedding Theorem (1961)
Let G be a finitely generated group. Then:

G is
computably presented

⇔ G embeds into
a finitely presented group

Corollary
Every countable abelian group embeds into a finitely presented
group.

Follows from Higman–Neumann–Neumann 1949.

Problem (Higman): Find an explicit and natural example of a
finitely presented group that contains Q.



Higman’s Embedding Theorem (1961)
Let G be a finitely generated group. Then:

G is
computably presented

⇔ G embeds into
a finitely presented group



Higman’s Embedding Theorem (1961)
Let G be a finitely generated group. Then:

G is
computably presented

⇔ G embeds into
a finitely presented group

This theorem has the form

G has a certain
algorithmic property

⇔ G embeds into
a certain kind of group

Question (Higman): Are there other theorems of this type?
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Conjecture
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Richard J. Thompson, 2004
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An Observation

Observation (Kuznecov 1958, Thompson 1969)
Every finitely presented simple group has solvable word problem.

Thompson mentioned this result at a 1969 conference in Irvine,
California. Higman and William Boone were both in the audience.

William and
Eileen Boone, 1979
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Observation (Kuznecov 1958, Thompson 1969)
Every finitely presented simple group has solvable word problem.

Proof.
Given a presentation ⟨s1 , . . . sm | r1 , . . . rn⟩ for a simple group G
and a word w, we run two simultaneous searches:

Search #1
Search for a proof that

w = 1

using the relations r1 , . . . , rn.

Search #2
Search for a proof that

s1 = · · · = sm = 1

using w = 1 and r1 , . . . , rn.

Eventually one of the searches terminates. □
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An Observation

Boone and Higman recognized Thompson’s observation as a
group-theoretic analog of a basic observation in logic:

Observation
Every complete theory with finitely many axioms is decidable.

Logic Group Theory

axiomatic system group presentation
axioms relations

inconsistent theory trivial group
complete theory simple group
decidable theory decidable word problem
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Theorem (Boone–Higman 1974)
Every finitely generated group G with solvable word problem
embeds into a computably presented simple group.

Sketch of Proof. We want a simple group that contains G.

Simple = The normal closure of any non-identity element is the
whole group.

Trick: Given words u, v ≠G 1, consider the group

G′ =
〈
G, x , t

�� (uux)t = uxv
〉
.

G′ is an HNN extension of G ∗ ⟨x⟩, so G embeds into G′.

But now v lies in the normal closure of u. Repeat until done. □



The Conjecture

The Boone–Higman Conjecture (1973)
Let G be a finitely generated group. Then:

G has solvable
word problem

⇔ G embeds into a finitely
presented simple group



The Conjecture

The Boone–Higman Conjecture (1973)
Let G be a finitely generated group. Then:

G has solvable
word problem

⇔ G embeds into a finitely
presented simple group

Theorem (Sacerdote 1977)
There are analogs of the Boone–Higman theorem for the order,
conjugacy, power, and subgroup membership problems.



Finitely Presented Simple
Groups



Thompson’s Groups

In 1965, Richard J. Thompson defined three infinite groups.

F acts on the interval.
finitely presented

T acts on the circle.
finitely presented, simple

V acts on the Cantor set.
finitely presented, simple
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Definition of V

The Cantor set C is the infinite product space {0, 1}𝜔.

A dyadic subdivision of C is any subdivision obtained by
repeatedly cutting pieces in half.

000 001 01 100 101 11



Definition of V

Thompson’s group V is the group of all homeomorphisms that
map “linearly” between the pieces of two dyadic subdivisions.

0𝜔 100𝜔 101𝜔 11𝜔

00𝜔 01𝜔 10𝜔 11𝜔

This group V is finitely presented and simple.



Subgroups of V

The following groups embed into V :

1. All finite groups, free groups, free abelian groups,
⊕

𝜔V .

2. (Higman 1974, Brown 1987) Generalized Thompson groups
Fn, Tn, and Vn.

3. (Röver 1999) The Houghton groups Hn, and free products of
finitely many finite groups.

4. (Guba–Sapir 1999) Z ≀ Z, (Z ≀ Z) ≀ Z, ((Z ≀ Z) ≀ Z) ≀ Z, . . .

5. (Bleak–Kassabov–Matucci 2011) Q/Z.

6. (Bleak–Salazar-Díaz 2013) V ≀ A and V ∗ A, where A is any
finite group or A ∈ {Z,Q/Z}.
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Grigorchuk’s Group

Grigorchuk (1979) defined a certain finitely generated group
G ≤ Aut(T2).

Rostislav Grigorchuk
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▶ G has intermediate growth: the number of elements of length
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Grigorchuk’s Group

Grigorchuk (1979) defined a certain finitely generated group
G ≤ Aut(T2).

Properties of G (Grigorchuk 1979 and 1984)

▶ G has intermediate growth: the number of elements of length
less than n grows like exp

(
n0.7675) (Erschler–Zheng 2020).

▶ G is a solution to the Burnside problem: it is an infinite, finitely
generated torsion group.

Theorem (Röver 1999)
Every finitely generated torsion subgroup of V is finite. Hence G
does not embed into V.
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Observe that the boundary 𝜕T2 is the Cantor set {0, 1}𝜔.
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Röver’s Group

So does G embed into a finitely presented simple group?

Observe that the boundary 𝜕T2 is the Cantor set {0, 1}𝜔.

G acts by homeomorphisms on this Cantor set.

Theorem (Röver 1999)
The group VG generated by V and G is finitely presented and
simple!

Generalization: VdG is finitely presented whenever G ≤ Aut(Td) is
self-similar and contracting (Nekrashevych 2013).

But VdG is usually not simple.
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Matthew Brin
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Brin’s Groups

Elements of 2V map “linearly” between two subdivisions.

−→

Theorem (Brin 2004)
The group 2V is finitely presented and simple.
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V 2V 3V

· · ·



Brin’s Groups

Brin defined a family of groups nV (n ≥ 1) similarly, with 1V = V .

V 2V 3V

· · ·

Theorem (Brin 2009)
The group nV is finitely presented and simple for all n ≥ 1.



Algorithmic Properties

Brin’s groups have very interesting algorithmic properties.

Theorem (B–Bleak 2014)
The order problem in nV is unsolvable for n ≥ 2

Theorem (B–Bleak–Matucci 2016)
The subgroup membership problem in nV is unsolvable for n ≥ 2.

Theorem (Salo 2020)
The conjugacy problem in nV is unsolvable for n ≥ 2.
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Subgroups of Brin’s groups

Theorem (B–Bleak–Matucci 2016)
Every right-angled Artin group (RAAG) embeds into one of the
groups nV.

Salo 2021: In fact, all RAAG’s embed into 2V .

Corollary
Any group G that virtually embeds into a RAAG embeds into 2V.



Subgroups of Brin’s groups

The following groups virtually embed into RAAG’s, and therefore
embed into 2V :

1. (Crisp–Wiest 2004) All graph braid groups.

2. (Wise 2009) All limit groups.

3. (Haglund–Wise 2010) All finitely generated Coxeter groups.

4. (Agol 2012) All cubulated hyperbolic groups.

5. (Przytycki–Wise 2012) Fundamental groups of Riemannian
3-manifolds of non-positive curvature.

6. (Groves–Manning 2020, Oregón-Reyes 2020) Certain
cubulated relatively hyperbolic groups.
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Countable Abelian Groups

Problem (Higman): Find an explicit and natural example of a
finitely presented group that contains Q.

In 1999, Martin Bridson and Pierre de la Harpe submitted this
question to the Kourovka notebook as a “well-known” problem.

Theorem (B–Hyde–Matucci 2020)
The “lift” of Thompson’s group T to the real line contains Q.

T =
〈
a, b

�� a4b−3 , (ba)5b−9 , [bab, a2baba2],
[bab, a2b2a2baba2ba2]

〉
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Here Thompson’s group T is a certain subgroup of Homeo(S1).
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−→

A

B

C



Countable Abelian Groups

Here Thompson’s group T is a certain subgroup of Homeo(S1).

AB

C

−→

A

B

C

A lift of an element g ∈ T is a homeomorphism g : R→ R that
makes the following diagram commute:

R
g
//

��

R

��

S1
g
// S1
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Countable Abelian Groups

Here Thompson’s group T is a certain subgroup of Homeo(S1).

AB

C

−→

A

B

C

Here’s one possible lift of the element above:

A A

A A

B B

B B

C C

C C
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Countable Abelian Groups

Here Thompson’s group T is a certain subgroup of Homeo(S1).

AB

C

−→

A

B

C

The group T (first defined in Ghys–Sergiescu 1980) consists of all
lifts of all elements of T .

Bleak–Kassabov–Matucci 2011: T contains Q/Z.

B–Hyde–Matucci 2020: T contains Q.
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Countable Abelian Groups

Of course, T is finitely presented, but not simple.

Theorem (B–Hyde–Matucci 2022)
Every countable abelian group embeds into a finitely presented
simple group.

Proof Outline.

1. Define an action of T on the Cantor set {0, 1}𝜔.

2. Prove that the group VT generated by V and T is finitely
presented and simple.

3. Prove that VT contains
⊕

𝜔Q ⊕
⊕

𝜔Q/Z, and thus contains
every countable abelian group. □
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Twisting Brin’s Groups

In 2020, Matthew Zaremsky and I considered a “twisted” version of
Brin’s group 2V .

In general, you can twist nV by any group of permutations
of {1, . . . , n}.

You can even twist 𝜔V by a finitely generated group G of
permutations of an infinite set X .

Theorem (B–Zaremsky 2020)
Any twisted 𝜔V is simple, and is finitely generated as long as the
action of G on X is transitive.

Corollary (B–Zaremsky 2020)
Any finitely generated group G embeds isometrically into a finitely
generated simple group.



Finite Presentation

Theorem (B–Zaremsky 2020, Zaremsky 2022)
Suppose:

1. G is finitely presented,
2. G acts highly transitively on a set X, and
3. Stabilizers of finite subsets of X are finitely generated.

Then the resulting twisted 𝜔V is a finitely presented simple group
that contains G.



Finite Presentation

Theorem (B–Zaremsky 2020, Zaremsky 2022)
Suppose:

1. G is finitely presented,
2. G acts highly transitively on a set X, and
3. Stabilizers of finite subsets of X are finitely generated.

Then the resulting twisted 𝜔V is a finitely presented simple group
that contains G.

Corollary
Every contracting self-similar group G embeds into a finitely
presented simple group.

Proof: G embeds into VdG, and VdG satisfies the conditions above.
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Hyperbolic Groups

Theorem (B–Bleak–Matucci–Zaremsky 2022)
Every hyperbolic group G embeds into a finitely presented simple
group.

Ingredients in the Proof:

1. G has a horofunction boundary 𝜕hG, which is compact and
totally disconnected.

2. Consider the group V[G] of all homeomorphisms of 𝜕hG that
piecewise agree with elements of G.

3. Prove that V[G] is finitely presented, highly transitive on some
orbit, and has finitely generated stabilizers, and hence the
resulting twisted 𝜔V is finitely presented.
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Hyperbolic Groups

The horofunction boundary 𝜕hG is defined as follows.

...
...

...

This is the tree of atoms. Its space of ends is 𝜕hG.
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1. The tree of atoms has a self-similar structure, and

2. G acts on 𝜕hG by asynchronous automata.



Hyperbolic Groups

Theorem (B–Bleak–Matucci 2018)
If G is a hyperbolic group, then:

1. The tree of atoms has a self-similar structure, and

2. G acts on 𝜕hG by asynchronous automata.



Hyperbolic Groups

Theorem (B–Bleak–Matucci 2018)
If G is a hyperbolic group, then:

1. The tree of atoms has a self-similar structure, and

2. G acts on 𝜕hG by asynchronous automata.



Hyperbolic Groups

Theorem (B–Bleak–Matucci 2018)
If G is a hyperbolic group, then:

1. The tree of atoms has a self-similar structure, and

2. G acts on 𝜕hG by asynchronous automata.



Hyperbolic Groups

Theorem (B–Bleak–Matucci 2018)
If G is a hyperbolic group, then:

1. The tree of atoms has a self-similar structure, and

2. G acts on 𝜕hG by asynchronous automata.

Theorem (B–Bleak–Matucci–Zaremsky 2022)
The action of G on 𝜕hG is contracting, and hence V[G] is finitely
presented.

In particular, you always arrive at a state in the nucleus after at most
2|g| + 39𝛿 + 13 steps.



Open Questions

Which of the following groups embed into finitely presented simple
groups?

1. Braid groups Bn for n ≥ 4?

2. Mapping class groups?

3. Out(Fn)?

4. Finitely generated nilpotent groups?

5. Finitely generated metabelian groups?

6. One relator groups?

Also, what is an explicit, natural example of a finitely presented
group that contains GLn(Q)?
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It is an open question whether mapping class groups and braid
groups embed into finitely presented simple groups.

For one possible approach, consider the following element of
Thompson’s group T .

F

AB

C

D
E

−→
F

A
B

C

D E



Mapping Class Groups

It is an open question whether mapping class groups and braid
groups embed into finitely presented simple groups.

For one possible approach, consider the following element of
Thompson’s group T .

F

AB

C

D
E

−→
F

A
B

C

D E

This looks just like the action of a pseudo-Anosov on PMF !



Mapping Class Groups

Train tracks give PMF a piecewise-integral projective (PIP)
structure, with elements of Mod(S) acting as PIP maps.

Thurston observed that the group PIP(S1) of PIP homeomorphisms
of S1 is isomorphic to Thompson’s group T .

Open Question (Thurston): For n ≥ 2, is the group PIP(Sn)
finitely generated?

Mod(Sg,n) embeds into PIP(S6g−7+2n) for g ≥ 3. Is this a finitely
presented simple group?



The End
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