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Let G be a group with finite generating set S = {s1 , . . . , sr}.

The Word Problem in G (Dehn 1911)
Given a word w in s1 , . . . , sr , decide whether w represents the
identity in G.

G has solvable word problem if there exists an algorithmic
solution.
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The Word Problem

Let G be a group with finite generating set S = {s1 , . . . , sr}.

The Word Problem in G (Dehn 1911)
Given a word w in s1 , . . . , sr , decide whether w represents the
identity in G.

G has solvable word problem if there exists an algorithmic
solution.

Theorem (Novikov 1955, Boone 1954–1957)
There exist finitely presented groups with unsolvable word problem.
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The Word Problem

The word problem has two parts:

1. If w = 1, can we determine this in finite time?

2. If w ≠ 1, can we determine this in finite time?

Part (1) is solvable iff G is computably presented

G = ⟨s1 , . . . , sr | R1 ,R2 ,R3 , . . .⟩.

If W is the set of all words for the identity in G, then:

1. W is computably enumerable ⇔ G is computably presented

2. W is computable ⇔ G has solvable word problem
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Easy Direction

Proposition (Kuznecov 1958, Thompson 1969)
Every finitely presented simple group has solvable word problem.

Proof.
Given a presentation ⟨s1 , . . . sm | R1 , . . .Rn⟩ for a simple group G
and a word w, we run two simultaneous searches:

Search #1
Search for a proof that

w = 1

using the relations R1 , . . . ,Rn.

Search #2
Search for a proof that

s1 = · · · = sm = 1

using w = 1 and R1 , . . . ,Rn.

Eventually one of the searches terminates. □
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Easy Direction

Proposition (Kuznecov 1958, Thompson 1969)
Every finitely presented simple group has solvable word problem.

Thompson showed this result at a 1969 conference in Irvine,
California. Higman and William Boone were both in the audience.

Graham Higman, 1984

William and
Eileen Boone,
1979



Motivation

They immediately recognized this proof as a group-theoretic analog
of a basic observation in logic:

Observation
Every complete theory with finitely many axioms is decidable.

Logic Group Theory

axiomatic system group presentation
axioms relations

inconsistent theory trivial group
complete theory simple group
decidable theory decidable word problem
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The Conjecture

The Boone–Higman Conjecture (1973)
Let G be a finitely presented group. Then:

G has solvable
word problem

⇒ G embeds into a finitely
presented simple group

A Boone–Higman embedding of a group G is any embedding of
G into a finitely presented simple group.

So which groups admit Boone–Higman embeddings?

Candidates: Free groups, GL(n,Z), hyperbolic groups, Coxeter
groups, braid groups, mapping class groups, Aut(Fn), Out(Fn),
RAAGs, Baumslag–Solitar groups, lamplighter groups, many Artin
groups, 3-manifold groups, polycyclic groups, ...



Finitely Presented Simple
Groups



Thompson’s Group V

The first examples of infinite, finitely presented simple groups were
introduced by Richard J. Thompson in the 1960’s. The largest of
these is Thompson’s group V .

Richard J. Thompson, 2004
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Thompson’s Group V

Let C be the Cantor space {0, 1}𝜔.

Each finite binary sequence 𝛼 determines a cone 𝛼C.

00C 01C 10C 11C

There is a prefix-replacement homeomorphism between any two
cones.

0C 11C
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Thompson’s Group V

Elements of Thompson’s group V map the cones of one partition
to the cones of another by prefix replacement.

(Thompson 1965, Higman 1974) V is finitely presented and simple.
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Properties of V

1. It acts on a Cantor space, in this case the Cantor set {0, 1}𝜔.

2. Elements are piecewise defined. Every homeomorphism
whose pieces have the right form belongs to the group.

3. It acts highly transitively on each orbit.

Most known finitely presented simple groups have these properties,
and are in some sense generalizations of V .
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Brin–Thompson Groups

For example, Brin (2004) defined a group 2V acting on C × C.

10C × C 11C × C0C × 0C

0C × 11C

0C × 10C
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Elements of 2V map “linearly” between two subdivisions.
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Brin–Thompson Groups

Elements of 2V map “linearly” between two subdivisions.

−→

Theorem (Brin 2004)
The group 2V is finitely presented and simple.
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Brin–Thompson Groups

Brin defined a family of groups nV (n ≥ 1) similarly, with 1V = V .

V 2V 3V

· · ·

Theorem (Brin 2009)
The group nV is finitely presented and simple for all n ≥ 1.
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Properties of Brin–Thompson groups

The Brin–Thompson groups have very interesting dynamics.

They also have very interesting algorithmic properties.

Theorem (B–Bleak 2014)
The torsion problem in nV is unsolvable for n ≥ 2

Theorem (B–Bleak–Matucci 2016)
The subgroup membership problem in nV is unsolvable for n ≥ 2.
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Embeddings into V

A Boone–Higman embedding of a group G is any embedding of
G into a finitely presented simple group.

Which groups embed into V?

Thompson (1965): Free groups and free abelian groups embed
into V .

Higman (1974): Locally finite groups (such as Q/Z) embed into V ,
but GL(3,Z) does not.

Virtually free groups (Röver 1999) and various wreath products
(Guba–Sapir 1999, Bleak–Salazar-Díaz 2013) also embed into V ,
but not much else.
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contain GLn(Z).
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Scott’s groups

Scott (1984) found finitely presented simple groups Sc(n) that
contain GLn(Z).

Observe that GLn(Z) acts on the Cantor space Zn
(2), where Z(2) is

the 2-adic integers.

Sc(n) is the group of all piecewise homeomorphisms f of Zn
(2)

whose pieces have the form

f (x) = 2rAx + 2sb r , s ∈ Z, A ∈ GLn(Z), b ∈ Zn

Theorem (Scott 1984)
The group Sc(n) is finitely presented, simple, and contains GLn(Z).



Consequences

The following finitely presented groups embed into GLn(Z):

1. Auslander (1967) Virtually polycyclic groups (including virtually
nilpotent groups)

2. Hsu–Wise (1999) Right-angled Artin groups

3. Crisp–Wiest (2004) Surface groups

4. Haglund–Wise (2010) Coxeter groups

5. Agol (2013) Cubulated hyperbolic groups

6. Przytycki–Wise (2018) Mixed 3-manifold groups

7. Wise (2021) Limit groups, one-relator groups with torsion

By Scott’s theorem, all such groups admit Boone–Higman
embeddings.
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More Progress

The following groups also admit Boone–Higman embeddings:

1. Röver (1999): Grigorchuk’s group

2. B–Bleak–Matucci–Zaremsky (2023): Hyperbolic groups,
contracting self-similar groups

3. Bux–Isenrich–Wu (2024): Baumslag–Solitar groups,
free-by-cyclic groups, Artin groups of types Ã2, C̃2, and G̃2

4. B–Hyde–Matucci (2024): Countable abelian groups (e.g. Q)

5. Zaremsky (2025): Finitely presented self-similar groups,
S-arithmetic groups

6. B–Fournier-Facio–Hyde–Zaremsky (2025):
Aut(Fn), braid groups, some mapping class groups,
Artin groups of types Bn, Dn, I2(m), and Ãn
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Type (A) Actions

Let G be a finitely presented group acting faithfully on a set X .

The action G↷ X has type (A) if:

1. There are finitely many orbits of pairs in X , and

2. Stabilizers of points in X are finitely generated.

Theorem (B–Zaremsky 2020, Zaremsky 2024)
Any group that admits a type (A) action has a Boone–Higman
embedding.

The proof uses a new class of simple groups called twisted
Brin–Thompson groups.
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Twisted Brin–Thompson groups

For example, twisted 2V is similar to 2V , but we can reflect
rectangles along their main diagonal.

Any permutation group G↷ {1, . . . , n} determines a twisted
version of nV .

More generally, any faithful action G↷ X gives you a twisted
Brin–Thomspon group.

Theorem (B–Zaremsky 2020)
Any twisted Brin–Thompson group is simple, and contains G.

Theorem (Zaremsky 2024)
A twisted Brin–Thompson group is finitely presented if and only if
G↷ X has type (A).



Example: Hyperbolic Groups



Example: Hyperbolic Groups

Theorem (B–Bleak–Matucci–Zaremsky 2023)
Every hyperbolic group G admits a Boone–Higman embedding.



Example: Hyperbolic Groups

Theorem (B–Bleak–Matucci–Zaremsky 2023)
Every hyperbolic group G admits a Boone–Higman embedding.



Example: Hyperbolic Groups

Theorem (B–Bleak–Matucci–Zaremsky 2023)
Every hyperbolic group G admits a Boone–Higman embedding.

Sketch of Proof:

1. G has a horofunction boundary 𝜕hG, which is compact and
totally disconnected.



Example: Hyperbolic Groups

Theorem (B–Bleak–Matucci–Zaremsky 2023)
Every hyperbolic group G admits a Boone–Higman embedding.

Sketch of Proof:

1. G has a horofunction boundary 𝜕hG, which is compact and
totally disconnected.

2. Let [[G]] be the group of all homeomorphisms of 𝜕hG that
piecewise agree with elements of G.



Example: Hyperbolic Groups

Theorem (B–Bleak–Matucci–Zaremsky 2023)
Every hyperbolic group G admits a Boone–Higman embedding.

Sketch of Proof:

1. G has a horofunction boundary 𝜕hG, which is compact and
totally disconnected.

2. Let [[G]] be the group of all homeomorphisms of 𝜕hG that
piecewise agree with elements of G.

3. Prove that [[G]] is finitely presented and its action on each orbit
in 𝜕hG has type (A).



Example: Hyperbolic Groups

Theorem (B–Bleak–Matucci–Zaremsky 2023)
Every hyperbolic group G admits a Boone–Higman embedding.

Sketch of Proof:

1. G has a horofunction boundary 𝜕hG, which is compact and
totally disconnected.

2. Let [[G]] be the group of all homeomorphisms of 𝜕hG that
piecewise agree with elements of G.

3. Prove that [[G]] is finitely presented and its action on each orbit
in 𝜕hG has type (A).

4. So G embeds in [[G]], and [[G]] embeds in a finitely presented
simple group.
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Example: Groups Acting on Trees

Theorem (Bux–Isenrich–Wu 2024)
Let G be a group acting faithfully and cocompactly on a locally finite
tree T. If all vertex stabilizers are finitely presented, then G admits a
Boone–Higman embedding.

Sketch of Proof:

1. Define a group RPG(T ) of permutations of the vertices of T
that contains G.

2. Prove that RPG(T ) is finitely presented and its action on the
vertices has type (A).

3. So G embeds in RPG(T ), and RPG(T ) embeds in a finitely
presented simple group.
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Example: Groups Acting on Trees

Theorem (Bux–Isenrich–Wu 2024)
Let G be a group acting faithfully and cocompactly on a locally finite
tree T. If all vertex stabilizers are finitely presented, then G admits a
Boone–Higman embedding.

This theorem gives Boone–Higman embeddings for:

1. Bamuslag–Solitar groups ⟨a, b | b−1amb = an⟩,

2. Free-by-cyclic groups Fn ⋊ Z, and

3. Certain Artin groups:

Ã2 : C̃2 :
44 G̃2 :

6
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Each Aut(Fn) admits a Boone–Higman embedding into a twisted
Brin–Thompson group.



Aut(Fn)

Theorem (B–Fournier-Facio–Hyde–Zaremsky 2025)
Each Aut(Fn) admits a Boone–Higman embedding into a twisted
Brin–Thompson group.

Corollary
The following groups admit Boone–Higman embeddings:

1. The braid groups Bn.

2. The loop braid groups LBn and LBext
n .

3. The ribbon braid groups RBn.
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Theorem (B–Fournier-Facio–Hyde–Zaremsky 2025)
Each Aut(Fn) admits a Boone–Higman embedding into a twisted
Brin–Thompson group.

Corollary
Mapping class groups for the following surfaces admit
Boone–Higman embeddings:

1. Any finite-type surface with at least one puncture.

2. Any finite-type surface with at least one boundary component.

3. The closed surface of genus 2.
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Aut(Fn)

Theorem (B–Fournier-Facio–Hyde–Zaremsky 2025)
Each Aut(Fn) admits a Boone–Higman embedding into a twisted
Brin–Thompson group.

Corollary
The following Artin groups admit Boone–Higman embeddings:

An : Bn :
4

Dn : I2(m) : m Ãn :



Finding an action
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For an action of type (A), we need:
1. The action to be faithful,
2. The action to have finitely many orbits of pairs, and
3. The stabilizers to be finitely generated.
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Recall that a law in a group G is an equation in n variables that
holds for all choices of elements of G.

If L = 1 is a law in G, where L is a word in x1 , . . . , xn, then

(x1 , . . . , xn , xn+1) ↦→ (x1 , . . . , xn , xn+1L)

is an element of Aut(Fn+1) that acts trivially on Gn+1.

G is lawless if it has no nontrivial laws. For such a group, the action

Aut(Fn)↷ Gn

is faithful for all n.
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Unfortunately, the action

Aut(Fn)↷ Gn

almost never has finitely many orbits of pairs.

Indeed, (g1 , . . . , gn) and (h1 , . . . , hn) can only be in the same orbit if

⟨g1 , . . . , gn⟩ = ⟨h1 , . . . hn⟩

so when G is infinite the action has infinitely many orbits.
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Aut(Fn) is generated by:
1. (x1 , x2 , . . . , xn) ↦→ (x𝜎(1) , x𝜎(2) , . . . , x𝜎(n)) for all 𝜎 ∈ Sn

2. (x1 , x2 , . . . , xn) ↦→ (x−1
1 , x2 , . . . , xn)

3. (x1 , x2 , . . . , xn) ↦→ (x1x2 , x2 , . . . , xn)

Let’s throw in:
4. (x1 , x2 , . . . , xn) ↦→ (x1g, x2 , . . . , xn) for all g ∈ G.

This makes a larger group ⟨Aut(Fn),G⟩ that still acts on Gn.

Note: Elements of ⟨Aut(Fn),G⟩ can be interpreted as
automorphisms of Fn ∗ G that fix G pointwise.
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Orbits of pairs

Theorem (B–Fournier-Facio–Hyde–Zaremsky 2025)
If G is simple and n ≥ 2, then the action ⟨Aut(Fn),G⟩↷ Gn is
2-transitive.

Sketch of Proof: Let’s assume n = 2.
1. The action is transitive.
2. The stabilizer of (1, 1) acts transitively on G2 − (1, 1).

If k1 , . . . , km ∈ G, then

(x , y) ↦→
(
xyk1 · · · ykm , y

)
stabilizes (1, 1). Since G is simple, we can use this to map any
(g, h) to any (g′, h) as long as h ≠ 1. □
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If M = 1 is a mixed identity in G, where M is a word in
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(x1 , . . . , xn , xn+1) ↦→ (x1 , . . . , xn , xn+1M)

is an element of ⟨Aut(Fn+1),G⟩ that acts trivially on Gn+1.

G is mixed identity free if it has no nontrivial mixed identities. For
such a group, the action

⟨Aut(Fn),G⟩↷ Gn

is faithful for all n.

Theorem (Hull–Osin 2016)
Every countable, highly transitive group is either mixed identity free
or has a normal subgroup isomorphic to Alt(N).

In particular, Thompson’s group V is mixed identity free.



So we’re done

Theorem (B–Fournier-Facio–Hyde–Zaremsky)
For any n ≥ 2,

1. The action ⟨Aut(Fn),V⟩↷ Vn is faithful and 2-transitive,

2. The group ⟨Aut(Fn),V⟩ is finitely presented, and

3. The stabilizer of any element of Vn is finitely generated,

so we get a Boone–Higman embedding of ⟨Aut(Fn),V⟩.

Notes:
▶ For (2), we use a theorem of Carette (2011).
▶ For (3), we prove that the stabilizer is a quasi-retract of

⟨Aut(Fn),V⟩.
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We can replace V by any highly transitive, finitely presented simple
group. Thus:
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...and, there’s more!

We can replace V by any highly transitive, finitely presented simple
group. Thus:

Theorem (B–Fournier-Facio–Hyde–Zaremsky 2025)
Every highly transitive, finitely presented simple group embeds into
a finitely presented twisted Brin–Thompson group.

Permutational Boone–Higman Conjecture (Zaremsky 2024)
Every finitely presented group with solvable word problem embeds
into a highly transitive, finitely presented simple group.



Open Questions

Which of the following Artin groups admit Boone–Higman
embeddings?

▶ Exceptional groups of spherical type:

E6 : E7 : E8 :

F4 :
4 H3 :

5 H4 :
5

▶ Groups of Euclidean type other than Ãn, C̃2, and G̃2.

▶ Rank 3 groups of hyperbolic type? 3-free groups?



Open Questions

Which of the following groups admit Boone–Higman embeddings?

1. Mapping class groups for closed surfaces of genus ≥ 3

2. Out(Fn)

3. GLn(Q)

4. Free Burnside groups B(m, n) with solvable word problem

5. Finitely presented metabelian groups

6. One relator groups without torsion

7. CAT(0) groups

8. Automatic groups

9. Finitely presented residually finite groups



The End



Mapping Class Groups

It is an open question whether other mapping class groups admit
Boone–Higman embeddings.

Train tracks give PMF a piecewise-integral projective (PIP)
structure, with mapping classes acting as PIP maps.

Thurston observed that the group PIP(S1) of PIP homeomorphisms
of S1 is isomorphic to Thompson’s group T .

Open Question (Thurston): For n ≥ 2, is the group PIP(Sn)
finitely generated?

If PIP(Sn) is a finitely presented simple group, this would give
Boone–Higman embeddings for all mapping class groups.
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