Boone–Higman Embeddings of $Aut(F_n)$ and Mapping Class Groups of Punctured Surfaces

Jim Belk, University of Glasgow

North British Geometric Group Theory Seminar

University of St Andrews, 9 May 2025

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Collaborators

Collin Bleak St Andrews

F. Fournier-Facio Cambridge

James Hyde SUNY Binghamton

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで

Collaborators

Francesco Matucci Milano–Bicocca

Matthew Zaremsky SUNY Albany

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let *G* be a group with finite generating set $S = \{s_1, \ldots, s_r\}$.

The Word Problem in *G* (Dehn 1911)

Given a word w in s_1, \ldots, s_r , decide whether w represents the identity in G.

G has *solvable word problem* if there exists an algorithmic solution.

Let *G* be a group with finite generating set $S = \{s_1, \ldots, s_r\}$.

The Word Problem in G (Dehn 1911)

Given a word w in s_1, \ldots, s_r , decide whether w represents the identity in G.

G has **solvable word problem** if there exists an algorithmic solution.

Examples: Free groups, $GL(n, \mathbb{Z})$, hyperbolic groups, Coxeter groups, braid groups, mapping class groups, $Aut(F_n)$, $Out(F_n)$, RAAGs, Baumslag–Solitar groups, lamplighter groups, many Artin groups, 3-manifold groups, polycyclic groups, one-relator groups, self-similar groups, Thompson's groups, ...

Let *G* be a group with finite generating set $S = \{s_1, \ldots, s_r\}$.

The Word Problem in *G* (Dehn 1911)

Given a word w in s_1, \ldots, s_r , decide whether w represents the identity in G.

G has *solvable word problem* if there exists an algorithmic solution.

Let *G* be a group with finite generating set $S = \{s_1, \ldots, s_r\}$.

The Word Problem in G (Dehn 1911)

Given a word w in s_1, \ldots, s_r , decide whether w represents the identity in G.

G has **solvable word problem** if there exists an algorithmic solution.

Theorem (Novikov 1955, Boone 1954–1957)

There exist finitely presented groups with unsolvable word problem.

・ロト・西ト・ヨト・ヨト・ 日・ つくぐ

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

The word problem has two parts:

- 1. If w = 1, can we determine this in finite time?
- 2. If $w \neq 1$, can we determine this in finite time?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

The word problem has two parts:

1. If w = 1, can we determine this in finite time?

2. If $w \neq 1$, can we determine this in finite time?

Part (1) is solvable iff G is computably presented

$$G = \langle s_1, \ldots, s_r \mid R_1, R_2, R_3, \ldots \rangle.$$

The word problem has two parts:

1. If w = 1, can we determine this in finite time?

2. If $w \neq 1$, can we determine this in finite time?

Part (1) is solvable iff G is computably presented

$$G = \langle s_1, \ldots, s_r \mid R_1, R_2, R_3, \ldots \rangle.$$

If *W* is the set of all words for the identity in *G*, then:

- 1. *W* is computably enumerable \Leftrightarrow *G* is computably presented
- 2. *W* is computable \Leftrightarrow *G* has solvable word problem

Higman's Embedding Theorem (1961)

Let G be a finitely generated group. Then:

G is computably presented

 \Leftrightarrow

G embeds into a finitely presented group

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Higman's Embedding Theorem (1961)

Let G be a finitely generated group. Then:

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Higman's Embedding Theorem (1961)

Let G be a finitely generated group. Then:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Higman's Embedding Theorem (1961)

Let G be a finitely generated group. Then:

G is computably presented

 \Leftrightarrow

G embeds into a finitely presented group

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Higman's Embedding Theorem (1961)

Let G be a finitely generated group. Then:

G is computably presented

G embeds into a finitely presented group

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:

G has solvable word problem

 \Leftrightarrow

G embeds into a finitely presented simple group

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Higman's Embedding Theorem (1961)

Let G be a finitely generated group. Then:

G is computably presented

G embeds into a finitely presented group

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:

G has solvable word problem

G embeds into a finitely presented simple group

Proposition (Kuznecov 1958, Thompson 1969)

Every finitely presented simple group has solvable word problem.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Proposition (Kuznecov 1958, Thompson 1969)

Every finitely presented simple group has solvable word problem.

Proof.

Given a presentation $\langle s_1, \ldots s_m | R_1, \ldots R_n \rangle$ for a simple group *G* and a word *w*, we run two simultaneous searches:

Search #1Search #2Search for a proof thatSearch for a proof thatw = 1 $s_1 = \dots = s_m = 1$ using the relations R_1, \dots, R_n using w = 1 and R_1, \dots, R_n

ション 小田 マイビット ビックタン

Eventually one of the searches terminates.

Proposition (Kuznecov 1958, Thompson 1969)

Every finitely presented simple group has solvable word problem.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Proposition (Kuznecov 1958, Thompson 1969)

Every finitely presented simple group has solvable word problem.

Thompson showed this result at a 1969 conference in Irvine, California. Higman and William Boone were both in the audience.

Graham Higman, 1984

William and Eileen Boone, 1979

Motivation

They immediately recognized this proof as a group-theoretic analog of a basic observation in logic:

Observation

Every complete theory with finitely many axioms is decidable.

Logic	Group Theory
axiomatic system	group presentation
axioms	relations
inconsistent theory	trivial group
complete theory	simple group
decidable theory	decidable word problem

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:

G has solvable word problem

⇒ hard G embeds into a finitely presented simple group

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:

Clapham (1965): It suffices to prove the conjecture when G is finitely presented.

The Boone–Higman Conjecture (1973)

Let G be a finitely generated group. Then:

Clapham (1965): It suffices to prove the conjecture when G is finitely presented.

The Boone–Higman Conjecture (1973)

Let G be a finitely presented group. Then:

Clapham (1965): It suffices to prove the conjecture when G is finitely presented.

The Boone–Higman Conjecture (1973)

Let G be a finitely presented group. Then:

G has solvable word problem

 \Rightarrow

G embeds into a finitely presented simple group

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

The Boone–Higman Conjecture (1973)

Let G be a finitely presented group. Then:

G embeds into a finitely presented simple group

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

A **Boone–Higman embedding** of a group *G* is any embedding of *G* into a finitely presented simple group.

The Boone–Higman Conjecture (1973)

Let G be a finitely presented group. Then:

A **Boone–Higman embedding** of a group *G* is any embedding of *G* into a finitely presented simple group.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

So which groups admit Boone–Higman embeddings?

The Boone–Higman Conjecture (1973)

Let G be a finitely presented group. Then:

A **Boone–Higman embedding** of a group *G* is any embedding of *G* into a finitely presented simple group.

So which groups admit Boone-Higman embeddings?

Candidates: Free groups, $GL(n, \mathbb{Z})$, hyperbolic groups, Coxeter groups, braid groups, mapping class groups, $Aut(F_n)$, $Out(F_n)$, RAAGs, Baumslag–Solitar groups, lamplighter groups, many Artin groups, 3-manifold groups, polycyclic groups, ...

Finitely Presented Simple Groups

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで

The first examples of infinite, finitely presented simple groups were introduced by Richard J. Thompson in the 1960's. The largest of these is *Thompson's group V*.

Richard J. Thompson, 2004

ヘロト 人間 ト 人 ヨト 人 ヨトー

Let *C* be the Cantor space $\{0, 1\}^{\omega}$.

Each finite binary sequence α determines a *cone* α *C*.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Let *C* be the Cantor space $\{0, 1\}^{\omega}$.

Each finite binary sequence α determines a *cone* αC .

Let *C* be the Cantor space $\{0, 1\}^{\omega}$.

Each finite binary sequence α determines a *cone* αC .

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Let *C* be the Cantor space $\{0, 1\}^{\omega}$.

Each finite binary sequence α determines a *cone* αC .

There is a *prefix-replacement* homeomorphism between any two cones.

Thompson's Group V

Elements of *Thompson's group V* map the cones of one partition to the cones of another by prefix replacement.

Thompson's Group V

Elements of *Thompson's group V* map the cones of one partition to the cones of another by prefix replacement.

(Thompson 1965, Higman 1974) V is finitely presented and simple.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

・ロト・日本・日本・日本・日本・日本

1. It acts on a *Cantor space*, in this case the Cantor set $\{0, 1\}^{\omega}$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - のへで

- 1. It acts on a *Cantor space*, in this case the Cantor set $\{0, 1\}^{\omega}$.
- 2. Elements are *piecewise defined*. Every homeomorphism whose pieces have the right form belongs to the group.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

- 1. It acts on a *Cantor space*, in this case the Cantor set $\{0, 1\}^{\omega}$.
- 2. Elements are *piecewise defined*. Every homeomorphism whose pieces have the right form belongs to the group.
- 3. It acts *highly transitively* on each orbit.

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで

1. It acts on a *Cantor space*, in this case the Cantor set $\{0, 1\}^{\omega}$.

- 2. Elements are *piecewise defined*. Every homeomorphism whose pieces have the right form belongs to the group.
- 3. It acts highly transitively on each orbit.

- 1. It acts on a *Cantor space*, in this case the Cantor set $\{0, 1\}^{\omega}$.
- 2. Elements are *piecewise defined*. Every homeomorphism whose pieces have the right form belongs to the group.
- 3. It acts *highly transitively* on each orbit.

Most known finitely presented simple groups have these properties, and are in some sense generalizations of V.

For example, Brin (2004) defined a group 2V acting on $C \times C$.

Matthew Brin

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○ ○

For example, Brin (2004) defined a group 2V acting on $C \times C$.

	=		=			=					=		=		
						**									
	=		=	=	=	=		=	=		=	=	=	==	
##			##	##		=			##			##		==	
	=				==										
	=				=	=		=	=		=		=		
	=				==	=		==			=				
	=				=	=		=			=				
			=			=	=		ш				=	**	
=	=			=	==	=		==	=	##	==	=	=	**	
	=			=	=	=	=	=	=		=	=	=		
=	=		=		==	=		==			==		=		
==	==	***	==	==	==	==	==	==	==	==		==	==	==	
	##		##	**		##	##	=		##		**	=	**	
=	=		=		=	=		=	=	88	=		=		
			=		=	=	=		=	==			=	88	

For example, Brin (2004) defined a group 2V acting on $C \times C$.

0C × 11C			
0C × 10C			
		100×0	110×0

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Elements of 2V map "linearly" between two subdivisions.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Elements of 2V map "linearly" between two subdivisions.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Elements of 2V map "linearly" between two subdivisions.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Theorem (Brin 2004)

The group 2V is finitely presented and simple.

Brin defined a family of groups nV ($n \ge 1$) similarly, with 1V = V.

. . .

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Brin defined a family of groups nV ($n \ge 1$) similarly, with 1V = V.

. . .

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Theorem (Brin 2009)

The group nV is finitely presented and simple for all $n \ge 1$.

Properties of Brin–Thompson groups

The Brin–Thompson groups have very interesting dynamics.

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで

Properties of Brin–Thompson groups

The Brin–Thompson groups have very interesting dynamics.

Properties of Brin–Thompson groups

The Brin–Thompson groups have very interesting dynamics.

They also have very interesting algorithmic properties.

Theorem (B–Bleak 2014)

The torsion problem in nV is unsolvable for $n \ge 2$

Theorem (B–Bleak–Matucci 2016)

The subgroup membership problem in nV is unsolvable for $n \ge 2$.

Some Boone–Higman Embeddings

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 – のへぐ

A **Boone–Higman embedding** of a group *G* is any embedding of *G* into a finitely presented simple group.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A **Boone–Higman embedding** of a group *G* is any embedding of *G* into a finitely presented simple group.

Which groups embed into V?

A **Boone–Higman embedding** of a group *G* is any embedding of *G* into a finitely presented simple group.

Which groups embed into V?

Thompson (1965): Free groups and free abelian groups embed into V.

A **Boone–Higman embedding** of a group *G* is any embedding of *G* into a finitely presented simple group.

Which groups embed into V?

Thompson (1965): Free groups and free abelian groups embed into V.

Higman (1974): Locally finite groups (such as \mathbb{Q}/\mathbb{Z}) embed into *V*, but GL(3, \mathbb{Z}) does not.

A **Boone–Higman embedding** of a group *G* is any embedding of *G* into a finitely presented simple group.

Which groups embed into V?

Thompson (1965): Free groups and free abelian groups embed into V.

Higman (1974): Locally finite groups (such as \mathbb{Q}/\mathbb{Z}) embed into *V*, but GL(3, \mathbb{Z}) does not.

Virtually free groups (Röver 1999) and various wreath products (Guba–Sapir 1999, Bleak–Salazar-Díaz 2013) also embed into V, but not much else.

Scott (1984) found finitely presented simple groups Sc(n) that contain $GL_n(\mathbb{Z})$.

Elizabeth Scott

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで

Scott (1984) found finitely presented simple groups Sc(n) that contain $GL_n(\mathbb{Z})$.

Scott (1984) found finitely presented simple groups Sc(n) that contain $GL_n(\mathbb{Z})$.

Observe that $GL_n(\mathbb{Z})$ acts on the Cantor space $\mathbb{Z}_{(2)}^n$, where $\mathbb{Z}_{(2)}$ is the 2-adic integers.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Scott (1984) found finitely presented simple groups Sc(n) that contain $GL_n(\mathbb{Z})$.

Observe that $GL_n(\mathbb{Z})$ acts on the Cantor space $\mathbb{Z}_{(2)}^n$, where $\mathbb{Z}_{(2)}$ is the 2-adic integers.

Sc(n) is the group of all piecewise homeomorphisms f of $\mathbb{Z}^{n}_{(2)}$ whose pieces have the form

$$f(\mathbf{x}) = 2^r A \mathbf{x} + 2^s \mathbf{b}$$
 $r, s \in \mathbb{Z}, A \in \operatorname{GL}_n(\mathbb{Z}), \mathbf{b} \in \mathbb{Z}^n$

Theorem (Scott 1984)

The group Sc(n) is finitely presented, simple, and contains $GL_n(\mathbb{Z})$.

Consequences

The following finitely presented groups embed into $GL_n(\mathbb{Z})$:

- 1. Auslander (1967) Virtually polycyclic groups (including virtually nilpotent groups)
- 2. Hsu–Wise (1999) Right-angled Artin groups
- 3. Crisp-Wiest (2004) Surface groups
- 4. Haglund-Wise (2010) Coxeter groups
- 5. Agol (2013) Cubulated hyperbolic groups
- 6. Przytycki–Wise (2018) Mixed 3-manifold groups
- 7. Wise (2021) Limit groups, one-relator groups with torsion

By Scott's theorem, all such groups admit Boone–Higman embeddings.

The following groups also admit Boone–Higman embeddings:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

The following groups also admit Boone–Higman embeddings:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

1. Röver (1999): Grigorchuk's group

The following groups also admit Boone–Higman embeddings:

- 1. Röver (1999): Grigorchuk's group
- 2. B–Bleak–Matucci–Zaremsky (2023): Hyperbolic groups, contracting self-similar groups

The following groups also admit Boone–Higman embeddings:

- 1. Röver (1999): Grigorchuk's group
- 2. B–Bleak–Matucci–Zaremsky (2023): Hyperbolic groups, contracting self-similar groups
- Bux–Isenrich–Wu (2024): Baumslag–Solitar groups, free-by-cyclic groups, Artin groups of types *A*₂, *C*₂, and *G*₂
- 4. B–Hyde–Matucci (2024): Countable abelian groups (e.g. \mathbb{Q})
- 5. Zaremsky (2025): Finitely presented self-similar groups, *S*-arithmetic groups
- 6. B–Fournier-Facio–Hyde–Zaremsky (2025): Aut(F_n), braid groups, some mapping class groups, Artin groups of types B_n , D_n , $I_2(m)$, and \widetilde{A}_n

Type (A) Actions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Type (A) Actions

Let *G* be a finitely presented group acting faithfully on a set X.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○ ○

The action $G \curvearrowright X$ has **type** (A) if:

- 1. There are finitely many orbits of pairs in X, and
- 2. Stabilizers of points in *X* are finitely generated.
Type (A) Actions

Let *G* be a finitely presented group acting faithfully on a set X.

The action $G \curvearrowright X$ has **type** (A) if:

- 1. There are finitely many orbits of pairs in X, and
- 2. Stabilizers of points in *X* are finitely generated.

Theorem (B–Zaremsky 2020, Zaremsky 2024)

Any group that admits a type (A) action has a Boone–Higman embedding.

Type (A) Actions

Let *G* be a finitely presented group acting faithfully on a set X.

The action $G \curvearrowright X$ has **type** (A) if:

- 1. There are finitely many orbits of pairs in X, and
- 2. Stabilizers of points in *X* are finitely generated.

Theorem (B–Zaremsky 2020, Zaremsky 2024)

Any group that admits a type (A) action has a Boone–Higman embedding.

The proof uses a new class of simple groups called *twisted Brin–Thompson groups*.

For example, *twisted* 2V is similar to 2V, but we can reflect rectangles along their main diagonal.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

э

For example, *twisted* 2V is similar to 2V, but we can reflect rectangles along their main diagonal.

For example, *twisted* 2V is similar to 2V, but we can reflect rectangles along their main diagonal.

Any permutation group $G \sim \{1, ..., n\}$ determines a twisted version of nV.

For example, *twisted* 2V is similar to 2V, but we can reflect rectangles along their main diagonal.

Any permutation group $G \curvearrowright \{1, ..., n\}$ determines a twisted version of nV.

For example, *twisted* 2V is similar to 2V, but we can reflect rectangles along their main diagonal.

Any permutation group $G \sim \{1, ..., n\}$ determines a twisted version of nV.

More generally, any faithful action $G \curvearrowright X$ gives you a *twisted Brin–Thomspon group*.

For example, *twisted* 2V is similar to 2V, but we can reflect rectangles along their main diagonal.

Any permutation group $G \sim \{1, ..., n\}$ determines a twisted version of nV.

More generally, any faithful action $G \curvearrowright X$ gives you a *twisted Brin–Thomspon group*.

Theorem (B–Zaremsky 2020)

Any twisted Brin–Thompson group is simple, and contains G.

Theorem (Zaremsky 2024)

A twisted Brin–Thompson group is finitely presented if and only if $G \curvearrowright X$ has type (A).

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (B–Bleak–Matucci–Zaremsky 2023)

Every hyperbolic group G admits a Boone–Higman embedding.

Theorem (B–Bleak–Matucci–Zaremsky 2023)

Every hyperbolic group G admits a Boone–Higman embedding.

Theorem (B–Bleak–Matucci–Zaremsky 2023) Every hyperbolic group G admits a Boone–Higman embedding.

Sketch of Proof:

1. *G* has a *horofunction boundary* $\partial_h G$, which is compact and totally disconnected.

Theorem (B–Bleak–Matucci–Zaremsky 2023) Every hyperbolic group G admits a Boone–Higman embedding.

Sketch of Proof:

1. *G* has a *horofunction boundary* $\partial_h G$, which is compact and totally disconnected.

2. Let $\llbracket G \rrbracket$ be the group of all homeomorphisms of $\partial_h G$ that piecewise agree with elements of *G*.

Theorem (B–Bleak–Matucci–Zaremsky 2023) Every hyperbolic group G admits a Boone–Higman embedding.

Sketch of Proof:

- 1. *G* has a *horofunction boundary* $\partial_h G$, which is compact and totally disconnected.
- 2. Let $\llbracket G \rrbracket$ be the group of all homeomorphisms of $\partial_h G$ that piecewise agree with elements of *G*.
- Prove that [[G]] is finitely presented and its action on each orbit in ∂_hG has type (A).

Theorem (B–Bleak–Matucci–Zaremsky 2023) Every hyperbolic group G admits a Boone–Higman embedding.

Sketch of Proof:

- 1. *G* has a *horofunction boundary* $\partial_h G$, which is compact and totally disconnected.
- 2. Let $\llbracket G \rrbracket$ be the group of all homeomorphisms of $\partial_h G$ that piecewise agree with elements of *G*.
- Prove that [[G]] is finitely presented and its action on each orbit in ∂_hG has type (A).
- 4. So *G* embeds in [[*G*]], and [[*G*]] embeds in a finitely presented simple group.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem (Bux–Isenrich–Wu 2024)

Let G be a group acting faithfully and cocompactly on a locally finite tree T. If all vertex stabilizers are finitely presented, then G admits a Boone–Higman embedding.

Theorem (Bux–Isenrich–Wu 2024)

Let G be a group acting faithfully and cocompactly on a locally finite tree T. If all vertex stabilizers are finitely presented, then G admits a Boone–Higman embedding.

Theorem (Bux–Isenrich–Wu 2024)

Let G be a group acting faithfully and cocompactly on a locally finite tree T. If all vertex stabilizers are finitely presented, then G admits a Boone–Higman embedding.

Sketch of Proof:

- 1. Define a group $\operatorname{RP}_G(T)$ of permutations of the vertices of T that contains G.
- 2. Prove that $\operatorname{RP}_G(T)$ is finitely presented and its action on the vertices has type (A).
- 3. So *G* embeds in $RP_G(T)$, and $RP_G(T)$ embeds in a finitely presented simple group.

・ロト・西ト・ヨト・ヨト・ 日・ つくぐ

Theorem (Bux–Isenrich–Wu 2024)

Let G be a group acting faithfully and cocompactly on a locally finite tree T. If all vertex stabilizers are finitely presented, then G admits a Boone–Higman embedding.

Theorem (Bux–Isenrich–Wu 2024)

Let G be a group acting faithfully and cocompactly on a locally finite tree T. If all vertex stabilizers are finitely presented, then G admits a Boone–Higman embedding.

This theorem gives Boone–Higman embeddings for:

- 1. Bamuslag–Solitar groups $\langle a, b | b^{-1}a^m b = a^n \rangle$,
- **2**. Free-by-cyclic groups $F_n \rtimes \mathbb{Z}$, and
- 3. Certain Artin groups:

$$\widetilde{A}_2$$
: $\overset{4}{\bigtriangleup}$ \widetilde{C}_2 : $\overset{4}{\dashrightarrow}$ \widetilde{G}_2 : $\overset{6}{\dashrightarrow}$

$Aut(F_n)$

・ロト・日本・日本・日本・日本・日本

$Aut(F_n)$

Theorem (B–Fournier-Facio–Hyde–Zaremsky 2025)

Each $Aut(F_n)$ admits a Boone–Higman embedding into a twisted Brin–Thompson group.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Aut(*F*_n)

Theorem (B–Fournier-Facio–Hyde–Zaremsky 2025)

Each $Aut(F_n)$ admits a Boone–Higman embedding into a twisted Brin–Thompson group.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Corollary

The following groups admit Boone–Higman embeddings:

- 1. The braid groups \mathcal{B}_n .
- 2. The loop braid groups \mathcal{LB}_n and \mathcal{LB}_n^{ext} .
- 3. The ribbon braid groups \mathcal{RB}_n .

$Aut(F_n)$

Theorem (B–Fournier-Facio–Hyde–Zaremsky 2025)

Each $Aut(F_n)$ admits a Boone–Higman embedding into a twisted Brin–Thompson group.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Aut(*F*_n)

Theorem (B–Fournier-Facio–Hyde–Zaremsky 2025)

Each $Aut(F_n)$ admits a Boone–Higman embedding into a twisted Brin–Thompson group.

Corollary

Mapping class groups for the following surfaces admit Boone–Higman embeddings:

- 1. Any finite-type surface with at least one puncture.
- 2. Any finite-type surface with at least one boundary component.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

3. The closed surface of genus 2.

$Aut(F_n)$

Theorem (B–Fournier-Facio–Hyde–Zaremsky 2025)

Each $Aut(F_n)$ admits a Boone–Higman embedding into a twisted Brin–Thompson group.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Aut(*F*_n)

Theorem (B–Fournier-Facio–Hyde–Zaremsky 2025) Each $Aut(F_n)$ admits a Boone–Higman embedding into a twisted Brin–Thompson group.

Corollary

The following Artin groups admit Boone–Higman embeddings:

Let
$$F_n = \langle x_1, \ldots, x_n \rangle$$
.

Then $Aut(F_n)$ is generated by **Nielsen transformations**:

1.
$$(x_1, x_2, ..., x_n) \mapsto (x_{\sigma(1)}, x_{\sigma(2)}, ..., x_{\sigma(n)})$$
 for all $\sigma \in S_n$
2. $(x_1, x_2, ..., x_n) \mapsto (x_1^{-1}, x_2, ..., x_n)$
3. $(x_1, x_2, ..., x_n) \mapsto (x_1 x_2, x_2, ..., x_n)$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ○ 臣 ○ の Q @

Let
$$F_n = \langle x_1, \ldots, x_n \rangle$$
.

Then $Aut(F_n)$ is generated by **Nielsen transformations**:

1.
$$(x_1, x_2, ..., x_n) \mapsto (x_{\sigma(1)}, x_{\sigma(2)}, ..., x_{\sigma(n)})$$
 for all $\sigma \in S_n$
2. $(x_1, x_2, ..., x_n) \mapsto (x_1^{-1}, x_2, ..., x_n)$
3. $(x_1, x_2, ..., x_n) \mapsto (x_1 x_2, x_2, ..., x_n)$

If *G* is any group, then $Aut(F_n)$ acts on $G^n = G \times \cdots \times G$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let
$$F_n = \langle x_1, \ldots, x_n \rangle$$
.

Then $Aut(F_n)$ is generated by **Nielsen transformations**:

1.
$$(x_1, x_2, ..., x_n) \mapsto (x_{\sigma(1)}, x_{\sigma(2)}, ..., x_{\sigma(n)})$$
 for all $\sigma \in S_n$
2. $(x_1, x_2, ..., x_n) \mapsto (x_1^{-1}, x_2, ..., x_n)$
3. $(x_1, x_2, ..., x_n) \mapsto (x_1 x_2, x_2, ..., x_n)$

If G is any group, then $Aut(F_n)$ acts on $G^n = G \times \cdots \times G$.

1. $(g_1, g_2, ..., g_n) \mapsto (g_{\sigma(1)}, g_{\sigma(2)}, ..., g_{\sigma(n)})$ for all $\sigma \in S_n$ 2. $(g_1, g_2, ..., g_n) \mapsto (g_1^{-1}, g_2, ..., g_n)$ 3. $(g_1, g_2, ..., g_n) \mapsto (g_1 g_2, g_2, ..., g_n)$

Let
$$F_n = \langle x_1, \ldots, x_n \rangle$$
.

Then $Aut(F_n)$ is generated by **Nielsen transformations**:

1.
$$(x_1, x_2, ..., x_n) \mapsto (x_{\sigma(1)}, x_{\sigma(2)}, ..., x_{\sigma(n)})$$
 for all $\sigma \in S_n$
2. $(x_1, x_2, ..., x_n) \mapsto (x_1^{-1}, x_2, ..., x_n)$
3. $(x_1, x_2, ..., x_n) \mapsto (x_1 x_2, x_2, ..., x_n)$

If *G* is any group, then $Aut(F_n)$ acts on $G^n = G \times \cdots \times G$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let
$$F_n = \langle x_1, \ldots, x_n \rangle$$
.

Then $Aut(F_n)$ is generated by *Nielsen transformations*:

1.
$$(x_1, x_2, ..., x_n) \mapsto (x_{\sigma(1)}, x_{\sigma(2)}, ..., x_{\sigma(n)})$$
 for all $\sigma \in S_n$
2. $(x_1, x_2, ..., x_n) \mapsto (x_1^{-1}, x_2, ..., x_n)$
3. $(x_1, x_2, ..., x_n) \mapsto (x_1 x_2, x_2, ..., x_n)$

If *G* is any group, then $Aut(F_n)$ acts on $G^n = G \times \cdots \times G$.

For an action of type (A), we need:

- 1. The action to be faithful,
- 2. The action to have finitely many orbits of pairs, and
- 3. The stabilizers to be finitely generated.

Faithfulness

・ロト・日本・モト・モー シュル

Faithfulness

Recall that a *law* in a group G is an equation in n variables that holds for all choices of elements of G.

Faithfulness

Recall that a *law* in a group G is an equation in n variables that holds for all choices of elements of G.

For example,

$$x_1 x_2 = x_2 x_1$$

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで

is a 2-variable law that holds in any abelian group.
Recall that a *law* in a group G is an equation in n variables that holds for all choices of elements of G.

For example,

$$x_1 x_2 x_1^{-1} x_2^{-1} = 1$$

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ - 三 - のへで

is a 2-variable law that holds in any abelian group.

Recall that a *law* in a group G is an equation in n variables that holds for all choices of elements of G.

Recall that a *law* in a group G is an equation in n variables that holds for all choices of elements of G.

If L = 1 is a law in G, where L is a word in x_1, \ldots, x_n , then

$$(x_1,\ldots,x_n,x_{n+1})\mapsto(x_1,\ldots,x_n,x_{n+1}L)$$

is an element of Aut(F_{n+1}) that acts trivially on G^{n+1} .

Recall that a *law* in a group G is an equation in n variables that holds for all choices of elements of G.

If L = 1 is a law in G, where L is a word in x_1, \ldots, x_n , then

$$(x_1,\ldots,x_n,x_{n+1})\mapsto(x_1,\ldots,x_n,x_{n+1}L)$$

is an element of Aut(F_{n+1}) that acts trivially on G^{n+1} .

G is *lawless* if it has no nontrivial laws. For such a group, the action

$$\operatorname{Aut}(F_n) \curvearrowright G^n$$

Unfortunately, the action

 $\operatorname{Aut}(F_n) \curvearrowright G^n$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

almost never has finitely many orbits of pairs.

Unfortunately, the action

 $\operatorname{Aut}(F_n) \frown G^n$

almost never has finitely many orbits of pairs.

Indeed, (g_1, \ldots, g_n) and (h_1, \ldots, h_n) can only be in the same orbit if

$$\langle g_1,\ldots,g_n\rangle=\langle h_1,\ldots,h_n\rangle$$

so when *G* is infinite the action has infinitely many orbits.

▲ロト▲御ト▲臣ト▲臣ト 臣 のへぐ

 $Aut(F_n)$ is generated by:

1.
$$(x_1, x_2, ..., x_n) \mapsto (x_{\sigma(1)}, x_{\sigma(2)}, ..., x_{\sigma(n)})$$
 for all $\sigma \in S_n$
2. $(x_1, x_2, ..., x_n) \mapsto (x_1^{-1}, x_2, ..., x_n)$
3. $(x_1, x_2, ..., x_n) \mapsto (x_1 x_2, x_2, ..., x_n)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

 $Aut(F_n)$ is generated by:

1.
$$(x_1, x_2, ..., x_n) \mapsto (x_{\sigma(1)}, x_{\sigma(2)}, ..., x_{\sigma(n)})$$
 for all $\sigma \in S_n$
2. $(x_1, x_2, ..., x_n) \mapsto (x_1^{-1}, x_2, ..., x_n)$
3. $(x_1, x_2, ..., x_n) \mapsto (x_1 x_2, x_2, ..., x_n)$

Let's throw in:

4. $(x_1, x_2, \ldots, x_n) \mapsto (x_1g, x_2, \ldots, x_n)$ for all $g \in G$.

 $Aut(F_n)$ is generated by:

1.
$$(x_1, x_2, ..., x_n) \mapsto (x_{\sigma(1)}, x_{\sigma(2)}, ..., x_{\sigma(n)})$$
 for all $\sigma \in S_n$
2. $(x_1, x_2, ..., x_n) \mapsto (x_1^{-1}, x_2, ..., x_n)$
3. $(x_1, x_2, ..., x_n) \mapsto (x_1 x_2, x_2, ..., x_n)$

Let's throw in:

4.
$$(x_1, x_2, \ldots, x_n) \mapsto (x_1g, x_2, \ldots, x_n)$$
 for all $g \in G$.

This makes a larger group $\langle Aut(F_n), G \rangle$ that still acts on G^n .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $Aut(F_n)$ is generated by:

1.
$$(x_1, x_2, ..., x_n) \mapsto (x_{\sigma(1)}, x_{\sigma(2)}, ..., x_{\sigma(n)})$$
 for all $\sigma \in S_n$
2. $(x_1, x_2, ..., x_n) \mapsto (x_1^{-1}, x_2, ..., x_n)$
3. $(x_1, x_2, ..., x_n) \mapsto (x_1 x_2, x_2, ..., x_n)$

Let's throw in:

4.
$$(x_1, x_2, \ldots, x_n) \mapsto (x_1g, x_2, \ldots, x_n)$$
 for all $g \in G$.

This makes a larger group $\langle Aut(F_n), G \rangle$ that still acts on G^n .

Note: Elements of $\langle Aut(F_n), G \rangle$ can be interpreted as automorphisms of $F_n * G$ that fix *G* pointwise.

Theorem (B–Fournier-Facio–Hyde–Zaremsky 2025) If *G* is simple and $n \ge 2$, then the action $\langle Aut(F_n), G \rangle \curvearrowright G^n$ is 2-transitive.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Theorem (B–Fournier-Facio–Hyde–Zaremsky 2025) If *G* is simple and $n \ge 2$, then the action $\langle Aut(F_n), G \rangle \curvearrowright G^n$ is 2-transitive.

Sketch of Proof: Let's assume n = 2.

Theorem (B–Fournier-Facio–Hyde–Zaremsky 2025) If *G* is simple and $n \ge 2$, then the action $\langle Aut(F_n), G \rangle \curvearrowright G^n$ is 2-transitive.

Sketch of Proof: Let's assume n = 2.

1. The action is transitive.

Theorem (B–Fournier-Facio–Hyde–Zaremsky 2025) If *G* is simple and $n \ge 2$, then the action $\langle Aut(F_n), G \rangle \curvearrowright G^n$ is *2-transitive*.

Sketch of Proof: Let's assume n = 2.

1. The action is transitive.

If $g, h \in G$, then

 $(x, y) \mapsto (xg, yh)$

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

is in $(\operatorname{Aut}(F_2), G)$ and maps (1, 1) to (g, h).

Theorem (B–Fournier-Facio–Hyde–Zaremsky 2025) If *G* is simple and $n \ge 2$, then the action $\langle Aut(F_n), G \rangle \curvearrowright G^n$ is 2-transitive.

Sketch of Proof: Let's assume n = 2.

1. The action is transitive.

Theorem (B–Fournier-Facio–Hyde–Zaremsky 2025) If *G* is simple and $n \ge 2$, then the action $\langle Aut(F_n), G \rangle \curvearrowright G^n$ is *2-transitive*.

Sketch of Proof: Let's assume n = 2.

- 1. The action is transitive.
- 2. The stabilizer of (1, 1) acts transitively on $G^2 (1, 1)$.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Theorem (B–Fournier-Facio–Hyde–Zaremsky 2025) If *G* is simple and $n \ge 2$, then the action $\langle Aut(F_n), G \rangle \curvearrowright G^n$ is *2-transitive*.

Sketch of Proof: Let's assume n = 2.

- 1. The action is transitive.
- 2. The stabilizer of (1, 1) acts transitively on $G^2 (1, 1)$.

If $k_1, \ldots, k_m \in G$, then

$$(x,y)\mapsto (xy^{k_1}\cdots y^{k_m},y)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

stabilizes (1, 1).

Theorem (B–Fournier-Facio–Hyde–Zaremsky 2025) If *G* is simple and $n \ge 2$, then the action $\langle Aut(F_n), G \rangle \curvearrowright G^n$ is *2-transitive*.

Sketch of Proof: Let's assume n = 2.

- 1. The action is transitive.
- 2. The stabilizer of (1, 1) acts transitively on $G^2 (1, 1)$.

If $k_1, \ldots, k_m \in G$, then

$$(x,y)\mapsto (xy^{k_1}\cdots y^{k_m},y)$$

stabilizes (1, 1). Since *G* is simple, we can use this to map any (g, h) to any (g', h) as long as $h \neq 1$.

・ロト・日本・モト・モー シュル

A *mixed identity* in a group *G* is an equation with constants from *G* and $n \ge 1$ variables that holds for all choices of elements of *G*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A *mixed identity* in a group *G* is an equation with constants from *G* and $n \ge 1$ variables that holds for all choices of elements of *G*.

For example, if $g \in Z(G)$, then

$$x_1 g x_1^{-1} g^{-1} = 1$$

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

is a 1-variable mixed identity in G.

A *mixed identity* in a group *G* is an equation with constants from *G* and $n \ge 1$ variables that holds for all choices of elements of *G*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A *mixed identity* in a group G is an equation with constants from G and $n \ge 1$ variables that holds for all choices of elements of G.

If M = 1 is a mixed identity in G, where M is a word in $g_1, \ldots, g_m, x_1, \ldots, x_n$ then

$$(x_1,\ldots,x_n,x_{n+1})\mapsto(x_1,\ldots,x_n,x_{n+1}M)$$

is an element of $(\operatorname{Aut}(F_{n+1}), G)$ that acts trivially on G^{n+1} .

A *mixed identity* in a group G is an equation with constants from G and $n \ge 1$ variables that holds for all choices of elements of G.

If M = 1 is a mixed identity in G, where M is a word in $g_1, \ldots, g_m, x_1, \ldots, x_n$ then

$$(x_1,\ldots,x_n,x_{n+1})\mapsto(x_1,\ldots,x_n,x_{n+1}M)$$

is an element of $(\operatorname{Aut}(F_{n+1}), G)$ that acts trivially on G^{n+1} .

A *mixed identity* in a group G is an equation with constants from G and $n \ge 1$ variables that holds for all choices of elements of G.

If M = 1 is a mixed identity in G, where M is a word in $g_1, \ldots, g_m, x_1, \ldots, x_n$ then

$$(x_1,\ldots,x_n,x_{n+1})\mapsto(x_1,\ldots,x_n,x_{n+1}M)$$

is an element of $\langle Aut(F_{n+1}), G \rangle$ that acts trivially on G^{n+1} .

G is *mixed identity free* if it has no nontrivial mixed identities. For such a group, the action

$$\langle \operatorname{Aut}(F_n), G \rangle \frown G^n$$

G is *mixed identity free* if it has no nontrivial mixed identities. For such a group, the action

$$\langle \operatorname{Aut}(F_n), G \rangle \curvearrowright G^n$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Theorem (Hull–Osin 2016)

Every countable, highly transitive group is either mixed identity free or has a normal subgroup isomorphic to $Alt(\mathbb{N})$.

G is *mixed identity free* if it has no nontrivial mixed identities. For such a group, the action

$$\langle \operatorname{Aut}(F_n), G \rangle \frown G^n$$

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Theorem (Hull–Osin 2016)

Every countable, highly transitive group is either mixed identity free or has a normal subgroup isomorphic to $Alt(\mathbb{N})$.

In particular, Thompson's group V is mixed identity free.

G is *mixed identity free* if it has no nontrivial mixed identities. For such a group, the action

 $\langle \operatorname{Aut}(F_n), G \rangle \frown G^n$

So we're done

Theorem (B–Fournier-Facio–Hyde–Zaremsky) For any $n \ge 2$,

- 1. The action $\langle \operatorname{Aut}(F_n), V \rangle \curvearrowright V^n$ is faithful and 2-transitive,
- 2. The group $\langle \operatorname{Aut}(F_n), V \rangle$ is finitely presented, and
- 3. The stabilizer of any element of Vⁿ is finitely generated,

so we get a Boone–Higman embedding of $\langle Aut(F_n), V \rangle$.

Notes:

- For (2), we use a theorem of Carette (2011).
- For (3), we prove that the stabilizer is a quasi-retract of $\langle Aut(F_n), V \rangle$.

...and, there's more!

We can replace V by any highly transitive, finitely presented simple group. Thus:

Theorem (B–Fournier-Facio–Hyde–Zaremsky 2025)

Every highly transitive, finitely presented simple group embeds into a finitely presented twisted Brin–Thompson group.

...and, there's more!

We can replace V by any highly transitive, finitely presented simple group. Thus:

Theorem (B–Fournier-Facio–Hyde–Zaremsky 2025)

Every highly transitive, finitely presented simple group embeds into a finitely presented twisted Brin–Thompson group.

Permutational Boone–Higman Conjecture (Zaremsky 2024) Every finitely presented group with solvable word problem embeds into a highly transitive, finitely presented simple group.

Open Questions

Which of the following Artin groups admit Boone–Higman embeddings?

Exceptional groups of spherical type:

- Groups of Euclidean type other than \widetilde{A}_n , \widetilde{C}_2 , and \widetilde{G}_2 .
- Rank 3 groups of hyperbolic type? 3-free groups?

Open Questions

Which of the following groups admit Boone–Higman embeddings?

- 1. Mapping class groups for closed surfaces of genus ≥ 3
- **2**. Out(*F_n*)
- **3**. $\operatorname{GL}_n(\mathbb{Q})$
- 4. Free Burnside groups B(m, n) with solvable word problem

- 5. Finitely presented metabelian groups
- 6. One relator groups without torsion
- 7. CAT(0) groups
- 8. Automatic groups
- 9. Finitely presented residually finite groups
The End

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ○ 臣 ○ の Q @

Mapping Class Groups

It is an open question whether other mapping class groups admit Boone–Higman embeddings.

Train tracks give \mathcal{PMF} a *piecewise-integral projective (PIP) structure*, with mapping classes acting as PIP maps.

Thurston observed that the group $PIP(S^1)$ of PIP homeomorphisms of S^1 is isomorphic to Thompson's group T.

Open Question (Thurston): For $n \ge 2$, is the group $PIP(S^n)$ finitely generated?

If $PIP(S^n)$ is a finitely presented simple group, this would give Boone–Higman embeddings for all mapping class groups.