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Quasiconformal Maps

For a linear transformation T : Rn → Rn, let

⌊T⌋ = min
v≠0

∥T v∥
∥v∥ and ⌈T⌉ = max

v≠0

∥T v∥
∥v∥

A diffeomorphism f : U → U′ between open subsets of Rn is
quasiconformal if the function

p ↦−→
⌈Dfp⌉
⌊Dfp⌋

is bounded on U.

Note 2: This definition can be extended to non-differentiable
homeomorphisms.



Applications of Quasiconformal Geometry

▶ Teichmüller theory: Defines a metric on the Teichmüller
space of a hyperbolic surface (Teichmüller 1940). Leads to a
proof of the Nielsen–Thurston classification of mapping
classes (Bers 1978).

▶ Mostow rigidity: For n ≥ 3, if X and Y are closed hyperbolic
n-manifolds and 𝜋1(X) � 𝜋1(Y ) then X and Y are isometric
(Mostow 1968).

▶ No wandering domains: Every component of the Fatou set
for a rational map on the Riemann sphere is periodic or
pre-periodic (Sullivan 1985).



Applications of Quasiconformal Geometry

▶ Geometric group theory: Any finitely generated group which
is quasi-isometric to Hn has a geometric action on Hn

(Tukia 1986, Gromov 1987, Cannon–Cooper 1992).

▶ Characteristic classes: Every n-manifold (n ≠ 4) supports a
unique quasiconformal structure (Sullivan 1978). This allows a
theory of characteristic classes for such manifolds
(Connes–Sullivan–Teleman 1994).

▶ Elliptic PDE’s: Solution to Calderón’s problem on electrical
impedance tomography in two dimensions (Astala–Päivärinta
2006).
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Quasiconformal Maps on a Disk

Let f : D2 → D2 be a homeomorphism which is quasiconformal on
the interior.

What can the restriction of f to S1 look like?

Theorem (Beurling–Ahlfors 1956)
A homeomorphism f : S1 → S1 is a restriction of a quasiconformal
map on D2 iff there exists a homeomorphism 𝜂 : [0,∞) → [0,∞) so
that

∥f (a) − f (b)∥
∥f (a) − f (c)∥ ≤ 𝜂

(
∥a − b∥
∥a − c∥

)
for every triple a, b, c of distinct points in S1.
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General Definition

Tukia and Väisälä (1980) observed that the Beurling–Ahlfors
condition makes sense for homeomorphisms f : X → Y between
arbitrary metric spaces.

Definition
A homeomorphism f : X → Y is a quasisymmetry if there exists a
homeomorphism 𝜂 : [0,∞) → [0,∞) such that

d
(
f (a), f (b)

)
d
(
f (a), f (c)

) ≤ 𝜂

(
d(a, b)
d(a, c)

)
for every triple a, b, c of distinct points in X .

Note: The quasisymmetries X → X form a group.



Examples
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If f is bilipschitz with

1
K

d(x , x′) ≤ d
(
f (x), f (x′)

)
≤ K d(x , x′)

then f is quasisymmetric with 𝜂(t) = K 2t.



Examples

d
(
f (a), f (b)

)
d
(
f (a), f (c)

) ≤ 𝜂

(
d(a, b)
d(a, c)

)

The function f (x) = x1/3 is a quasisymmetry of [−1, 1], with

𝜂(t) =
{

6t1/3 if 0 ≤ t ≤ 1
6t if t > 1.



A Non-Example

d
(
f (a), f (b)

)
d
(
f (a), f (c)

) ≤ 𝜂

(
d(a, b)
d(a, c)

)

This function is not a quasisymmetry of [−1, 1].



A Non-Example

d
(
f (a), f (b)

)
d
(
f (a), f (c)

) ≤ 𝜂

(
d(a, b)
d(a, c)

)

For a = 0, b = 𝜀, and c = −𝜀, we have

d
(
f (a), f (b)

)
d
(
f (a), f (c)

) =
𝜀1/3

𝜀
=

1
𝜀2/3

and
d(a, b)
d(a, c) = 1.
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Let f : U → U′ be a homeomorphism between domains in Rn.
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Theorem (Väisälä 1981)
If f is quasiconformal then f restricts to a quasisymmetry on every
compact subset of U.
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Theorem (Egg Yolk Principle, Väisälä 1981)
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1. f is quasiconformal.
2. There exists an 𝜂 : [0,∞) → [0,∞) so that f is

𝜂-quasisymmetric on every “egg yolk” in U.
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Whyburn’s Theorem (1958)
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Quasi-Isometries

Theorem (Bonk–Schramm 2000)
Any quasi-isometry G → H between hyperbolic groups induces a
quasisymmetry 𝜕∞G → 𝜕∞H.



Cannon’s Conjecture

Let G be a hyperbolic group.

Cannon’s Conjecture (1994)
If there exists a homeomorphism 𝜕∞G → S2, then G acts
geometrically on H3.

figure from Cannon, Floyd, and Parry 2001
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Cannon’s Conjecture

Let G be a hyperbolic group.

Cannon’s Conjecture (1994)
If there exists a homeomorphism 𝜕∞G → S2, then G acts
geometrically on H3.

Theorem (Sullivan–Tukia 1986)
If there exists a quasisymmetry 𝜕∞G → S2 then G acts
geometrically on H3.

Note: Kapovich–Kleiner (1998) have formulated an analog of
Cannon’s conjecture for groups with Sierpiński carpet boundary.



By the Way

Theorem (Dahmani–Guirardel–Przytycki 2011)
The boundary of a “random” hyperbolic group is homeomorphic to
the Menger sponge.

figure by Niabot from Wikimedia Commons



Quasisymmetries of
Sierpiński Carpets



Quasisymmetries of Sierpiński Carpets

We want to understand quasisymmetries for fractals homeomorphic
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dihedral of order 8.
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Quasisymmetries of Sierpiński Carpets

We want to understand quasisymmetries for fractals homeomorphic
to the Sierpiński carpet.

Theorem (Bonk–Merenkov 2013)
The quasisymmetry group of the square Sierpiński carpet is
dihedral of order 8.

−→

The full homeomorphism group is very large.



Quasisymmetries of Sierpiński Carpets

Other Sierpiński carpets can have many quasisymmetries.

So the quasisymmetry group depends on the metric.
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zero must be a Möbius transformation.

In particular, the quasisymmetry group of such a carpet is the group
of conformal homeomorphisms.
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Quasisymmetries of Sierpiński Carpets

A round carpet is a Sierpiński carpet whose holes are round disks.

Rigidity Theorem (Bonk–Kleiner–Merenkov 2009)
Any quasisymmetry between round carpets of Lebesgue measure
zero must be a Möbius transformation.

Uniformization Theorem (Bonk 2011)
A Sierpiński carpet is quasisymmetrically equivalent to a round
carpet if and only if:

1. The holes are uniform quasicircles, and
2. The holes are uniformly relatively separated.



Sierpiński Carpet Julia Sets

Sierpiński carpets also arise as Julia sets for certain rational
functions (Milnor–Lei 1993).

f (z) = z2 − 1
16z2



Julia Sets

Every rational function on the Riemann sphere has a Julia set
(the closure of the repelling periodic points).



Sierpiński Carpet Julia Sets

Sierpiński carpets also arise as Julia sets for certain rational
functions (Milnor–Lei 1993).

f (z) = z2 − 1
16z2



Sierpiński Carpet Julia Sets

Sierpiński carpets also arise as Julia sets for certain rational
functions (Milnor–Lei 1993).

Theorem (Bonk–Lyubich–Merenkov 2016)
Let f (z) be a rational function whose Julia set Jf is a Sierpiński
carpet. If f is postcritically finite, then the quasisymmetry group of Jf
is finite.

Qiu, Yang, and Zeng (2019) extend this to a large family of
semi-hyperbolic Sierpiński carpet Julia sets.



Quasisymmetries of
the Basilica



The Basilica

The basilica is the Julia set for f (z) = z2 − 1

Theorem (Lyubich–Merenkov 2018)
The quasisymmetry group of the basilica is infinite.



Quasisymmetries of the Basilica

Thompson’s group T is the group of all piecewise-linear
homeomorphisms of the circle R/Z for which:

1. All slopes are powers of 2, and
2. All breakpoints are dyadic rationals, as is the image of 0.

01/2

1/4

−→ 01/2

3/4
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In 2015, Bradley Forrest and I described a natural action of T on
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In 2015, Bradley Forrest and I described a natural action of T on
the basilica.

Domain:

E

C A

B

D F

Range: E

C

A

F

BD
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Quasisymmetries of the Basilica

In 2015, Bradley Forrest and I described a natural action of T on
the basilica.

This T is contained in a larger group of piecewise-conformal
homeomorphisms that we called the basilica Thompson group.

Theorem (B–Forrest 2015)
The basilica Thompson group is finitely generated, co-embeddable
with T, and has an index-two subgroup which is simple.

Theorem (Lyubich–Merenkov 2018)
All elements of the basilica Thompson group are quasisymmetries.



Other Julia Sets

Can we extend this to other Julia sets?

Julia set for f (z) = z2 − 0.157 + 1.032 i
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General Definition

Definition (Teplyaev 2008)
Let X be a compact, connected metrizable space.

For each n ≥ 0, fix a finite collection of subsets of X (the n-cells).

These define a finitely ramified fractal if:

1. Each n-cell is compact, connected, and has nonempty interior.

2. The intersection of any two n-cells is finite.

3. The entire space X is the unique 0-cell, and every n-cell is a
union of (n + 1)-cells.

4. If E0 ⊇ E1 ⊇ E2 ⊇ · · · with each En an n-cell, then
⋂

n=0 En is
a single point.
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Example: The Basilica

The basilica Julia set can be viewed as a finitely ramified fractal.

Thirty-six 3-cells
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Julia sets for rational functions are sometimes finitely ramified.

Julia set for f (z) = e2𝜋i/3z2 − 1
z2 − 1
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A metric on a finitely ramified fractal X is undistorted if:

1. It has exponential cell decay, and

2. The cells have uniform relative separation.

Theorem (B–Forrest 2023)
1. All undistorted metrics on X are quasisymmetrically equivalent.
2. Any metric quasisymmetrically equivalent to an undistorted

metric is undistorted.
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A metric on a finitely ramified fractal X is undistorted if:

1. It has exponential cell decay, and

2. The cells have uniform relative separation.

Exponential Cell Decay:
There exist constants 0 < r < R < 1 and C ≥ 1 so that

r |m−n|

C
≤ diam(E′)

diam(E) ≤ CR |m−n|

for any m-cell E and n-cell E′ that intersect.
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A metric on a finitely ramified fractal X is undistorted if:

1. It has exponential cell decay, and

2. The cells have uniform relative separation.

Uniform Relative Separation:
There exists a constant 𝛿 > 0 so that

d(E ,E′) ≥ 𝛿 diam(E)

for any two n-cells E and E′ that are disjoint.
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Main Theorem

A metric on a finitely ramified fractal X is undistorted if:

1. It has exponential cell decay, and

2. The cells have uniform relative separation.

Theorem (B–Forrest 2023)
1. All undistorted metrics on X are quasisymmetrically equivalent.
2. Any metric quasisymmetrically equivalent to an undistorted

metric is undistorted.

Corollary
If X and Y have undistorted metrics, a homeomorphism f : X → Y
is a quasisymmetry if and only if the pushforward of the metric on X
is undistorted.
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Application: Sierpiński Triangles

Bandt and Retta (1992) proved that the Sierpiński triangle T is
topologically rigid, i.e. every homeomorphism of T maps n-cells
to n-cells.

Uniformization Theorem (B–Forrest 2023)
A Sierpiński triangle is quasisymmetrically equivalent to the
standard one if and only if its metric is undistorted.

We obtain a similar uniformization theorem for any topologically
rigid fractal.
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A rational function f (z) is hyperbolic if the forward orbit of each
critical point converges to an attracting cycle.

Such maps are expanding on their Julia set with respect to an
appropriate metric.
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Hyperbolic Functions

A rational function f (z) is hyperbolic if the forward orbit of each
critical point converges to an attracting cycle.

Such maps are expanding on their Julia set with respect to an
appropriate metric.

All of our results apply only to hyperbolic rational functions f whose
Julia sets Jf are connected.
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A set S ⊂ Jf is a branch cut if f−1 has a single-valued branch on
each component of Jf \ S.

If S is finite and invariant (i.e. f (S) ⊆ S), then the iterated preimages
f−n(S) cut Jf into cells.
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Defining Cells

A set S ⊂ Jf is a branch cut if f−1 has a single-valued branch on
each component of Jf \ S.

If S is finite and invariant (i.e. f (S) ⊆ S), then the iterated preimages
f−n(S) cut Jf into cells.

Theorem (B–Forrest 2023)
If Jf has a finite invariant branch cut, the resulting cells define a
finitely ramified cell structure on Jf , and the restriction of the
spherical metric is undistorted.

Note: In the polynomial case, a finite invariant branch cut always
exists.
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Constructing Quasisymmetries

Consider two cells in a finitely ramified fractal X :

E (m-cell)

−→

E′ (n-cell)

A homeomorphism E → E′ is cellular if it maps (m + k)-cells to
(n + k)-cells for all k ≥ 0.
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A homeomorphism of X is piecewise-cellular if there exist
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{E1 , . . . ,En} and {E′
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′
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of X into cells so that each Ei maps to E′
i by a cellular map.
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Constructing Quasisymmetries

A homeomorphism of X is piecewise-cellular if there exist
subdivisions

{E1 , . . . ,En} and {E′
1 , . . . ,E

′
n}

of X into cells so that each Ei maps to E′
i by a cellular map.

Theorem (B–Forrest 2023)
If the metric on X is undistorted, then any piecewise-cellular
homeomorphism of X is a quasisymmetry.

This lets us construct quasisymmetries for many different Julia sets.
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Main Results for Julia Sets

Theorem (B–Forrest 2023)
Any connected Julia set for a hyperbolic quadratic polynomial has
infinitely many quasisymmetries.

Specifically, we use “ping-pong lemmas” to show that the
quasisymmetry group contains:

▶ A free product Z2 ∗ Zn for some n ≥ 2, and

▶ Thompson’s group F .

All of our constructed quasisymmetries are piecewise-cellular.
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Main Results for Julia Sets

We can also show that many other finitely ramified Julia sets have
infinite quasisymmetry group.

Julia set for f (z) = 1
z2 − 1

contains
T



Main Results for Julia Sets

However, some hyperbolic rational functions have a finitely ramified
Julia set with only finitely many homeomorphisms.

Julia set for f (z) = e2𝜋i/3z2 − 1
z2 − 1

dihedral of
order 8
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Also, we conjecture that some hyperbolic polynomials have Julia
sets with finite quasisymmetry group.

Julia set for f (z) = (4.424 + 1.374 i)(z3 − 3z + 2) − 1
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Also, we conjecture that some hyperbolic polynomials have Julia
sets with finite quasisymmetry group.

Julia set for f (z) = (4.424 + 1.374 i)(z3 − 3z + 2) − 1



The End
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